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We have seen significant progress in the recent past in research linking asset returns to

macroeconomic fundamentals. Existing models provide quantitatively realistic predic-

tions for the mean, variance, and other moments of asset returns from similarly realis-

tic macroeconomic inputs. The most popular models have representative agents, with

prominent examples based on recursive utility, including long-run risk, and habits, both

internal and external. Recursive utility and habits are different preference orderings,

but they share one important feature: dynamics play a central role. With recursive

preferences, dynamics in the consumption growth process are required to distinguish

them from additive power utility. With habits, dynamics enter preferences directly. The

question we address is whether these dynamics, which are essential to explaining average

excess returns, are realistic along other dimensions.

What other dimensions, you might ask. We propose two performance measures

that summarize the behavior of asset pricing models. We base them on the pricing

kernel, because every arbitrage-free model has one. One measure concerns the pricing

kernel’s dispersion, which we capture with entropy . We show that the (one-period)

entropy of the pricing kernel is an upper bound on mean excess returns (also over one

period). The second measure concerns the pricing kernel’s dynamics. We summarize

dynamics with what we call horizon dependence, a measure of how entropy varies with

the investment horizon. As with entropy, we can infer its magnitude from asset prices:

negative (positive) horizon dependence is associated with an increasing (decreasing)

mean yield curve and positive (negative) mean yield spreads.

The approach is similar in spirit to Hansen and Jagannathan (1991), in which prop-

erties of theoretical models are compared to those implied by observed returns. In their

case, the property is the standard deviation of the pricing kernel. In ours, the properties

are entropy and horizon dependence. Entropy is a measure of dispersion, a generaliza-



tion of variance. Horizon dependence has no counterpart in the Hansen-Jagannathan

methodology. We think it captures the dynamics essential to representative agent models

in a convenient and informative way.

Concepts of entropy have proved useful in a wide range of fields, so it is not surprising

they have started to make inroads into economics and finance. We find entropy-based

measures to be natural tools for our purpose. One reason is that entropy extends more

easily to multiple periods than, say, the standard deviation of the pricing kernel. Similar

reasoning underlies the treatment of long-horizon returns in Alvarez and Jermann (2005),

Hansen (2012), and Hansen and Scheinkman (2009). A second reason is that many

popular asset pricing models are loglinear, or nearly so. Logarithmic measures like

entropy and log-differences in returns are easily computed for them. Finally, entropy

extends to nonnormal distributions of the pricing kernel and returns in a simple and

transparent way. All of this will be clearer once we have developed the appropriate

tools.

Our performance measures give us new insight into the behavior of popular asset

pricing models. The evidence suggests that a realistic model should have substantial

one-period entropy (to match observed mean excess returns) and modest horizon depen-

dence (to match observed differences between mean yields on long and short bonds). In

models with recursive preferences or habits, the two features are often linked: dynamic

ingredients designed to increase the pricing kernel’s entropy often generate excessive

horizon dependence.

This tension between entropy and horizon dependence is a common feature: to gen-

erate enough of the former we end up with too much of the latter. We illustrate this

tension and point to ways of resolving it. One is illustrated by the Campbell-Cochrane

(1999) model: offsetting effects of a state variable on the conditional mean and vari-
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ance of log pricing kernel. Entropy comes from the conditional variance and horizon

dependence comes from both, which allows us to hit both targets. Another approach

is to introduce jumps: nonnormal innovations in consumption growth. Asset returns

are decidedly nonnormal, so it seems natural to allow the same in asset pricing models.

Jumps can be added to either class of models. With recursive utility, jump risk can

increase entropy substantially. Depending on their dynamic structure, they can have

either a large or modest impact on horizon dependence.

All of these topics are developed below. We use closed-form loglinear approximations

throughout to make all the moving parts visible. We think this brings us some useful

intuition even in models that have been explored extensively elsewhere.

We use a number of conventions to keep the notation, if not simple, as simple as

possible. (i) For the most part, Greek letters are parameters and Latin letters are

variables or coefficients. (ii) We use a t subscript (xt, for example) to represent a

random variable and the same letter without a subscript (x) to represent its mean. In

some cases, log x represents the mean of log xt rather than the log of the mean of xt,

but the subtle difference between the two has no bearing on anything important. (iii) B

is the backshift or lag operator, shifting what follows back one period: Bxt = xt−1,

Bkxt = xt−k, and so on. (iv) Lag polynomials are one-sided and possibly infinite:

a(B) = a0+a1B+a2B2+ · · ·. (v) The expression a(1) is the same polynomial evaluated

at B = 1, which generates the sum a(1) =
∑

j aj.

I. Properties of pricing kernels

In modern asset pricing theory, a pricing kernel accounts for asset returns. The

reverse is also true: asset returns contain information about the pricing kernel that
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gave rise to them. We summarize some well-known properties of asset returns, show

what they imply for the entropy of the pricing kernel over different time horizons, and

illustrate the entropy consequences of fitting a loglinear model to bond yields.

A. Properties of asset returns

We begin with a summary of the salient properties of excess returns. In Table I we

report the sample mean, standard deviation, skewness, and excess kurtosis of monthly

excess returns on a diverse collection of assets. None of this evidence is new, but it is

helpful to collect it in one place. Excess returns are measured as differences in logs of

gross US-dollar returns over the one-month Treasury.

We see, first, the equity premium. The mean excess return on a broad-based equity

index is 0.0040 = 0.40% per month or 4.8% a year. This return comes with risk: its

sample distribution has a standard deviation over 0.05, skewness of −0.4, and excess

kurtosis of 7.9. Nonzero values of skewness and excess kurtosis are an indication that

excess returns on the equity index are not normal.

Other equity portfolios exhibit a range of behavior. Some have larger mean excess

returns and come with larger standard deviations and excess kurtosis. Consider the

popular Fama-French portfolios, constructed from a five-by-five matrix of stocks sorted

by size (small to large) and book-to-market (low to high). Small firms with high book-

to-market have mean excess returns more than twice the equity premium (0.90% per

month). Option strategies (buying out-of-the-money puts and at-the-money straddles

on the S&P 500 index) have large negative excess returns, suggesting that short positions

will have large positive returns, on average. Both exhibit substantial skewness and excess

kurtosis.
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Currencies have smaller mean excess returns and standard deviations but comparable

excess kurtosis, although more sophisticated currency strategies have been found to

generate large excess returns. Here we see that buying the pound generates substantial

excess returns in this sample.

Bonds have smaller mean excess returns than the equity index. About half the excess

return of the five-year US Treasury bond over the one-month Treasury bill (0.15% in our

sample) is evident in the one-year bond (0.08%). The increase in mean excess returns

with maturity corresponds to a mean yield curve that also increases with maturity over

this range. The mean spread between yields on one-month and ten-year Treasuries

over the last four decades has been about 1.5% annually or 0.125% monthly. Alvarez

and Jermann (2005, Section 4) show that mean excess returns and yield spreads are

somewhat smaller if we consider longer samples, longer maturities, or evidence from the

U.K. All of these numbers refer to nominal bonds. Data on inflation-indexed bonds is

available for only a short sample and a limited range of maturities, leaving some range

of opinion about their properties. However, none of the evidence suggests that the

absolute magnitudes, whether positive or negative, are significantly greater than we see

for nominal bonds. Chernov and Mueller (2012) suggest instead that yield spreads are

about half as large on real bonds, which would make our estimates upper bounds.

These properties of returns are estimates, but they are suggestive of the facts a

theoretical model might try to explain. Our list includes: (i) Many assets have positive

mean excess returns, and some have returns substantially greater than a broad-based

equity index such as the S&P 500. We use a lower bound of 0.0100 = 1% per month.

The exact number is not critical, but it is helpful to have a clear numerical benchmark.

(ii) Excess returns on long bonds are smaller than excess returns on an equity index and

positive for nominal bonds. We are agnostic about the sign of mean yield spreads, but
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suggest they are unlikely to be larger than 0.0010 = 0.1% monthly in absolute value.

(iii) Excess returns on many assets are decidedly nonnormal.

B. Entropy

Our goal is to connect these properties of excess returns to features of pricing kernels.

We summarize these features using entropy, a concept that has been applied productively

in such disparate fields as physics, information theory, statistics, and (increasingly) eco-

nomics and finance. Among notable examples of the latter, Hansen and Sargent (2008)

use entropy to quantify ambiguity, Sims (2003) and Van Nieuwerburgh and Veldkamp

(2010) use it to measure learning capacity, and Ghosh, Julliard, and Taylor (2011) and

Stutzer (1996) use it to limit differences between true and risk-neutral probabilities

subject to pricing assets correctly.

The distinction between true and risk-neutral probabilities is central to asset pricing.

Consider a Markovian environment based on a state variable xt. We denote (true)

probabilities by pt,t+n, shorthand notation for p(xt+n|xt), the probability of the state at

date t + n conditional on the state at t. Similarly, p∗t,t+n is the analogous risk-neutral

probability. The relative entropy of the risk-neutral distribution is then

Lt(p
∗

t,t+n/pt,t+n) = −Et log(p
∗

t,t+n/pt,t+n),

where Et is the conditional expectation based on the true distribution. This object,

sometimes referred to as the Kullback-Leibler divergence, quantifies the difference be-

tween the two probability distributions. In the next subsection, we refer to it as condi-

tional entropy, but the distinction is more than we need here.
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Intuitively, we associate large risk premiums with large differences between true and

risk-neutral probabilities. One way to capture this difference is with a log-likelihood ra-

tio. For instance, we could use the log-likelihood ratio to test the null model p against the

alternative p∗. A large statistic is evidence against the null and thus suggests significant

prices of risk. Entropy is the population value of this statistic.

Another way to look at the same issue is to associate risk premiums with variability in

the ratio p∗t,t+n/pt,t+n. Entropy captures this notion as well. Because Et(p∗t,t+n/pt,t+n) =

1, we can rewrite entropy as

Lt(p
∗

t,t+n/pt,t+n) = logEt(p
∗

t,t+n/pt,t+n)− Et log(p
∗

t,t+n/pt,t+n). (1)

If the ratio is constant, it must equal one and entropy is zero. The concavity of the log

function tells us that entropy is nonnegative and increases with variability, in the sense

of a mean-preserving spread to the ratio p∗t,t+n/pt,t+n. These properties are consistent

with a measure of dispersion.

We think the concept of entropy is useful here because of its properties. It is con-

nected to excess returns on assets and real bond yields in a convenient way. This allows

us to link theoretical models to data in a constructive manner. We make these ideas

precise in the next section.

C. Entropy over horizons short and long

Entropy, suitably defined, supplies an upper bound on mean excess returns and a

measure of the dynamics of the pricing kernel. The foundation for both results is a
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stationary environment and the familiar no-arbitrage theorem: in environments that are

free of arbitrage opportunities, there is a positive random variable mt,t+n that satisfies

Et (mt,t+nrt,t+n) = 1 (2)

for any positive time interval n. Here mt,t+n is the pricing kernel over the period t

to t + n and rt,t+n is the gross return on a traded asset over the same period. Both

can be decomposed into one-period components, mt,t+n = Πn
j=1mt+j−1,t+j and rt,t+n =

Πn
j=1rt+j−1,t+j.

We approach entropy by a somewhat different route from the previous section. We

also scale it by the time horizon n. We define conditional entropy by

Lt(mt,t+n) = logEtmt,t+n − Et logmt,t+n. (3)

We connect this to our earlier definition using the relation between the pricing kernel

and conditional probabilities: mt,t+n = qnt p
∗

t,t+n/pt,t+n, where qnt = Etmt,t+n is the price

of an n-period bond (a claim to “one” in n periods). Since (3) is invariant to scaling

(the multiplicative factor qnt ), it is equivalent to (1). Mean conditional entropy is

ELt(mt,t+n) = E logEtmt,t+n − E logmt,t+n,

where E is the expectation based on the stationary distribution. If we scale this by the

time horizon n, we have mean conditional entropy per period:

I(n) = n−1ELt(mt,t+n). (4)
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We refer to this simply as entropy from here on. We develop this definition of entropy

in two directions, the first focusing on its value over one period, the second on how it

varies with time horizon n.

Our first result, which we refer to as the entropy bound , connects one-period entropy

to one-period excess returns:

I(1) = ELt(mt,t+1) ≥ E
(

log rt,t+1 − log r1t,t+1

)

, (5)

where r1t,t+1 = 1/q1t is the return on a one-period bond. In words: mean excess log

returns are bounded above by the (mean conditional) entropy of the pricing kernel. The

bound tells us entropy can be expressed in units of log returns per period.

The entropy bound (5) starts with the pricing relation (2) and the definition of

conditional entropy (3). Since log is a concave function, the pricing relation (2) and

Jensen’s inequality imply that for any positive return rt,t+n,

Et logmt,t+n + Et log rt,t+n ≤ log(1) = 0, (6)

with equality if and only if mt,t+nrt,t+n = 1. This is the conditional version of an

inequality reported by Bansal and Lehmann (1997, Section 2.3) and Cochrane (1992,

Section 3.2). The log return with the highest mean is, evidently, log rt,t+n = − logmt,t+n.

The first term in (6) is one component of conditional entropy. The other is logEtmt,t+n =

log qnt . We set n = 1 in (3) and note that r1t,t+1 = 1/q1t and logEtmt,t+1 = log q1t =

− log r1t,t+1. If we subtract this from (6), we have

Lt(mt,t+1) ≥ Et log rt+1 − log r1t,t+1. (7)
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We take the expectation of both sides to produce the entropy bound (5).

The relation between one-period entropy and the conditional distribution of logmt,t+1

is captured in a convenient way by its cumulant generating function and cumulants. The

conditional cumulant generating function of logmt,t+1 is

kt(s) = logEt

(

es logmt,t+1
)

,

the log of the moment generating function. Conditioning is indicated by the subscript

t. With the appropriate regularity conditions, it has the power series expansion

kt(s) =
∞
∑

j=1

κjts
j/j!

over some suitable range of s. The conditional cumulant κjt is the jth derivative of kt(s)

at s = 0; κ1t is the mean, κ2t is the variance, and so on. The third and fourth cumulants

capture skewness and excess kurtosis, respectively. If the conditional distribution of

logmt,t+1 is normal, then high-order cumulants (those of order j ≥ 3) are zero. In

general we have

Lt(mt,t+1) = kt(1)− κ1t

= κ2t(logmt,t+1)/2!
︸ ︷︷ ︸

normal term

+ κ3t(logmt,t+1)/3! + κ4t(logmt,t+1)/4! + · · ·
︸ ︷︷ ︸

nonnormal terms

, (8)

a convenient representation of the potential role played by departures from normality.

We take the expectation with respect to the stationary distribution to convert this to

one-period entropy.
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Our second result, which we refer to as horizon dependence, uses the behavior of

entropy over different time horizons to characterize the dynamics of the pricing kernel.

We define horizon dependence as the difference in entropy over horizons of n and one,

respectively:

H(n) = I(n)− I(1) = n−1ELt(mt,t+n)− ELt(mt,t+1). (9)

To see how this works, consider a benchmark in which successive one-period pricing

kernels mt,t+1 are iid (independent and identically distributed). Then mean conditional

entropy over n periods is simply a scaled-up version of one-period entropy,

ELt(mt,t+n) = nELt(mt,t+1).

This is a generalization of a well-known property of random walks: the variance is

proportional to the time interval. As a result, entropy I(n) is the same for all n and

horizon dependence is zero. In other cases, horizon dependence reflects departures from

the iid case, and in this sense is a measure of the pricing kernel’s dynamics. It captures

not only the autocorrelation of the log pricing kernel, but variations in all aspects of

the conditional distribution. This will become apparent when we study models with

stochastic variance and jumps, Sections II.C and II.D, respectively.

Perhaps the most useful feature of horizon dependence is that it is observable, in

principle, through its connection to bond yields. In a stationary environment, conditional

entropy over n periods is

Lt(mt,t+n) = logEtmt,t+n − Et logmt,t+n = log qnt − Et

n
∑

j=1

logmt+j−1,t+j .
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Entropy (4) is therefore

I(n) = n−1E log qnt − E logmt,t+1.

Bond yields are related to prices by ynt = −n−1 log qnt ; see Appendix A. Therefore horizon

dependence is related to mean yield spreads by

H(n) = −E(ynt − y1t ).

In words: horizon dependence is negative if the mean yield curve is increasing, positive

if it is decreasing, and zero if it is flat. Since mean forward rates and returns are closely

related to mean yields, we can express horizon dependence with them, too. See Appendix

A.

Entropy and horizon dependence give us two properties of the pricing kernel that we

can quantify with asset prices. Observed excess returns tell us that one-period entropy is

probably greater than 1%monthly. Observed bond yields tell us that horizon dependence

is smaller, probably less than 0.1% at observable time horizons. We use these bounds

as diagnostics for candidate pricing kernels. The exercise has the same motivation as

Hansen and Jagannathan (1991), but extends their work in looking at pricing kernels’

dynamics as well as dispersion.

D. Related approaches

Our entropy bound and horizon dependence touch on issues and approaches ad-

dressed in other work. A summary follows.
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The entropy bound (5), like the Hansen-Jagannathan (1991) bound, produces an

upper bound on excess returns from the dispersion of the pricing kernel. In this broad

sense the ideas are similar, but the bounds use different measures of dispersion and

excess returns. They are not equivalent and neither is a special case of the other. One

issue is extending these results to different time intervals. The relationship between

entropy at two different horizons is easily computed, a byproduct of judicious use of

the log function. The Hansen-Jagannathan bound, on the other hand, is not. Another

issue is the role of departures from lognormality, which are easily accommodated with

entropy. These and related issues are explored further in Appendix B.

Closer to our work is a bound derived by Alvarez and Jermann (2005). Ours differs

from theirs in using conditioning information. The conditional entropy bound (7) char-

acterizes the maximum excess return as a function of the state at date t. Our definition

of entropy is the mean across such states. Alvarez and Jermann (2005, Section 3) derive

a similar bound based on unconditional entropy,

L(mt,t+1) = logEmt,t+1 −E logmt,t+1.

The two are related by

L(mt,t+1) = ELt(mt,t+1) + L(Etmt,t+1).

There is a close analog for the variance: the unconditional variance of a random variable

is the mean of its conditional variance plus the variance of its conditional mean. This

relation converts (5) into an “Alvarez-Jermann bound,”

L(mt,t+1) ≥ E
(

log rt,t+1 − log r1t,t+1

)

+ L(Etmt,t+1),
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a component of their Proposition 2. Our bound is tighter, but since the last term is

usually small, it is not a critical issue in practice. More important to us is that our use

of mean conditional entropy provides a link to bond prices and yields.

Also related is an influential body of work on long-horizon dynamics that includes

notable contributions from Alvarez and Jermann (2005), Hansen and Scheinkman (2009),

and Hansen (2012). Hansen and Scheinkman (2009, Section 6) show that since pricing

is a linear operation, Perron-Frobenius-like logic tells us there is a positive eigenvalue λ

and associated positive eigenfunction e that solve

Et (mt,t+1et+1) = λet. (10)

As before, a subscript t denotes dependence on the state at date t; et, for example,

stands for e(xt).

One consequence is Alvarez and Jermann’s (2005) multiplicative decomposition of

the pricing kernel into mt,t+1 = m1
t,t+1m

2
t,t+1, where

m1
t,t+1 = mt,t+1et+1/(λet)

m2
t,t+1 = λet/et+1.

They refer to the components as permanent and transitory, respectively. By construc-

tion, Etm1
t,t+1 = 1. They also show 1/m2

t,t+1 = r∞t,t+1, the one-period return on a bond

of infinite maturity. The mean log return is therefore E log r∞t,t+1 = − log λ. Long bond

yields and forward rates converge to the same value. Hansen and Scheinkman (2009)

suggest a three-way decomposition of the pricing kernel into a long-run discount fac-

tor λ, a multiplicative martingale component m1
t,t+1, and a ratio of positive functionals
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et/et+1. Hansen (2012) introduces an additive decomposition of logmt,t+1 and identifies

permanent shocks with the additive counterpart to m1
t,t+1.

Alvarez and Jermann summarize the dynamics of pricing kernels by constructing a

lower bound for L(m1
t,t+1)/L(mt,t+1). Bakshi and Chabi-Yo (2012) refine this bound.

More closely related to what we do is an exact relation between the entropy of the

pricing kernel and its first component:

ELt(mt,t+1) = ELt(m
1
t,t+1) + E(log r∞t,t+1 − log r1t,t+1).

See Alvarez and Jermann (2005, proof of Proposition 2). Since the term on the left

is big (at least 1% monthly by our calculations) and the one on the far right is small

(say, 0.1% or smaller), most entropy must come from their first component. The term

structure shows up here in the infinite-maturity return, but Alvarez and Jermann do

not develop the connection between entropy and bond yields further.

Another consequence is an alternative route to long-horizon entropy: entropy for an

infinite time horizon. This line of work implies, in our terms,

I(∞) = log λ−E logmt,t+1. (11)

We now have the two ends of the entropy spectrum. The short end I(1) is the essential

ingredient of our entropy bound (5). The long end I(∞) is given by equation (11).

Horizon dependence H(n) = I(n)− I(1) describes how we get from one to the other as

we vary the time horizon n.
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E. An example: the Vasicek model

We illustrate entropy and horizon dependence in a loglinear example, a modest gen-

eralization of the Vasicek (1977) model. The pricing kernel is

logmt,t+1 = logm+
∞
∑

j=0

ajwt+1−j = logm+ a(B)wt+1, (12)

where a0 > 0 (a convention),
∑

j a
2
j < ∞ (“square summable”), and B is the lag

or backshift operator. The lag polynomial a(B) is described in Appendix C along with

some of its uses. The innovations wt are iid with mean zero, variance one, and (arbitrary)

cumulant generating function k(s) = logE(eswt). The infinite moving average gives us

control over the pricing kernel’s dynamics. The cumulant generating function gives us

similar control over the distribution.

The pricing kernel dictates bond prices and related objects; see Appendix A. The

solution is most easily expressed in terms of forward rates, which are connected to bond

prices by fn
t = log(qnt /q

n+1
t ) and yields by ynt = n−1

∑n
j=1 f

j−1
t . Forward rates in this

model are

−fn
t = logm+ k(An) + [a(B)/Bn]+wt (13)

for n ≥ 0 and An =
∑n

j=0 aj . See Appendix D. The subscript “+” means ignore negative

powers of B. Mean forward rates are therefore −E(fn
t ) = logm + k(An). Mean yields

follow as averages of forward rates: −E(ynt ) = logm+ n−1
∑n

j=1 k(Aj−1).
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In this setting, the initial coefficient (a0) governs one-period entropy and the others

(aj for j ≥ 1) combine with it to govern horizon dependence. Entropy is

I(n) = n−1ELt(mt,t+n) = n−1
n
∑

j=1

k(Aj−1)

for any positive time horizon n. Horizon dependence is therefore

H(n) = I(n)− I(1) = n−1
n
∑

j=1

[k(Aj−1)− k(A0)] .

Here we see the role of dynamics. In the iid case (aj = 0 for j ≥ 1), Aj = A0 = a0

for all j and horizon dependence is zero at all horizons. Otherwise horizon dependence

depends on the relative magnitudes of k(Aj−1) and k(A0). We also see the role of the

distribution of wt. Our benchmarks suggest k(A0) is big (at least 0.0100 = 1% monthly)

and k(Aj−1) − k(A0) is small (no larger than 0.0010 = 0.1% on average). The latter

requires, in practice, small differences between A0 and Aj−1, hence small values of aj.

We see more clearly how this works if we add some structure and choose parameter

values to approximate the salient features of interest rates. We make logmt,t+1 an

ARMA(1,1) process. Its three parameters are (a0, a1,ϕ), with a0 > 0 and |ϕ| < 1 (to

ensure square summability). They imply moving average coefficients aj+1 = ϕaj for

j ≥ 1. See Appendix C. This leads to an AR(1) for the short rate, which turns the

model into a legitimate discrete-time version of Vasicek. We choose ϕ and a1 to match

the autocorrelation and variance of the short rate and a0 to match the mean spread

between one-month and ten-year bonds. The result is a statistical model of the pricing

kernel that captures some of its central features.
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The short rate is log r1t,t+1 = f 0 = y1t . Equation (13) tells us that the short rate is

AR(1) with autocorrelation ϕ. We set ϕ = 0.85, an estimate of the monthly autocorre-

lation of the real short rate reported by Chernov and Mueller (2012). The variance of

the short rate is

Var(log r1t+1) =
∞
∑

j=1

a2j = a21/(1− ϕ2).

Chernov and Mueller report a standard deviation of (0.02/12) (2% annually), which

implies |a1| = 0.878×10−3. Neither of these numbers depends on the distribution of wt.

We choose a0 to match the mean yield spread on the ten-year bond. This calculation

depends on the distribution of wt through the cumulant generating function k(s). We do

this here for the normal case, where k(s) = s2/2, but the calculation is easily repeated for

other distributions. If the yield spread is E(y120−y1) = 0.0100, this implies a0 = 0.1837

and a1 < 0. We can reproduce a negative yield spread of similar magnitude by making

a1 positive.

We see the impact of these numbers on the moving average coefficients in Figure

1. The first bar in each pair corresponds to a negative value of a1 and a positive yield

spread, the second bar to the reverse. We see in both cases that the initial coefficient

a0 is larger than the others — by two orders of magnitude. It continues well beyond

the figure, which we truncated to make the others visible. The only difference is the

sign: an upward sloping mean yield curve requires a0 and a1 to have opposite signs, a

downward sloping curve the reverse.

The configuration of moving average coefficients, with a0 much larger than the others,

means that the pricing kernel is only modestly different from white noise. Stated in our

terms: one-period entropy is large relative to horizon dependence. We see that in Figure
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2. The dotted line in the middle is our estimated 0.0100 lower bound for one-period

entropy. The two thick lines at the top are entropy for the two versions of the model.

The dashed one is associated with negative mean yield spreads. We see that entropy

rises (slightly) with the horizon. The solid line below it is associated with positive mean

yield spreads, which result in a modest decline in entropy with maturity. The dotted

lines around them are the horizon dependence bounds: one-period entropy plus and

minus 0.0010. The models hit the bounds by construction.

The model also provides a clear illustration of long-horizon analysis. The state here

is the infinite history of innovations: xt = (wt, wt−1, wt−2, ...). Suppose

A∞ = a(1) = lim
n→∞

n
∑

j=0

An

exists. Then the principal eigenvalue λ and eigenfunction et are

log λ = logm+ k(A∞)

log et =
∞
∑

j=0

(A∞ − Aj)wt−j .

Long-horizon entropy is I(∞) = k(A∞).

II. Properties of representative agent models

In representative agent models, pricing kernels are marginal rates of substitution.

A pricing kernel follows from computing the marginal rate of substitution for a given

consumption growth process. We show how this works with several versions of models

with recursive utility and habits, the two workhorses of macro-finance. We examine
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models with dynamics in consumption growth, habits, the conditional variance of con-

sumption growth, and jumps. We report entropy and horizon dependence for each one

and compare them to the benchmarks we established earlier.

A. Preferences and pricing kernels

Our first class of representative agent models is based on what has come to be known

as recursive preferences or utility. The theoretical foundations were laid by Koopmans

(1960) and Kreps and Porteus (1978). Notable applications to asset pricing include

Bansal and Yaron (2004), Campbell (1993), Epstein and Zin (1989), Garcia, Luger, and

Renault (2003), Hansen, Heaton, and Li (2008), Koijen, Lustig, Van Nieuwerburgh, and

Verdelhan (2009), and Weil (1989).

We define utility recursively with the time aggregator,

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]1/ρ , (14)

and certainty equivalent function,

µt(Ut+1) =
[

Et(U
α
t+1)

]1/α
. (15)

Here Ut is “utility from date t on” or continuation utility. Additive power utility is a

special case with α = ρ. In standard terminology, ρ < 1 captures time preference (with

intertemporal elasticity of substitution 1/(1−ρ)) and α < 1 captures risk aversion (with

coefficient of relative risk aversion 1−α). The time aggregator and certainty equivalent
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functions are both homogeneous of degree one, which allows us to scale everything by

current consumption. If we define scaled utility ut = Ut/ct, equation (14) becomes

ut = [(1− β) + βµt(gt+1ut+1)
ρ]1/ρ , (16)

where gt+1 = ct+1/ct is consumption growth. This relation serves, essentially, as a

Bellman equation.

With this utility function, the pricing kernel is

mt,t+1 = βgρ−1
t+1 [gt+1ut+1/µt(gt+1ut+1)]

α−ρ . (17)

By comparison, the pricing kernel with additive power utility is

mt,t+1 = βgρ−1
t+1 . (18)

Recursive utility adds another term. It reduces to power utility in two cases: when

α = ρ and when gt+1 is iid. The latter illustrates the central role of dynamics. If gt+1

is iid, ut+1 is constant and the pricing kernel is proportional to gα−1
t+1 . This is arguably

different from power utility, where the exponent is ρ − 1, but with no intertemporal

variation in consumption growth we cannot tell the two apart. Beyond the iid case,

dynamics in consumption growth introduce an extra term to the pricing kernel: in logs,

the innovation in future utility plus a risk adjustment.

Our second class of models introduces dynamics to the pricing kernel directly through

preferences. This mechanism has a long history, with applications ranging from microe-

conomic studies of consumption behavior (Deaton, 1993) to business cycles (Lettau

and Uhlig, 2000, and Smets and Wouters, 2003). The asset pricing literature includes
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notable contributions from Abel (1992), Bansal and Lehmann (1997), Campbell and

Cochrane (1999), Chan and Kogan (2002), Chapman (2002), Constantinides (1990),

Heaton (1995), Otrok, Ravikumar, and Whiteman (2002), and Sundaresan (1989).

All of our habit models start with utility functions that include a state variable ht

that we refer to as the “habit.” A recursive formulation is

Ut = (1− β)f(ct, ht) + βEtUt+1. (19)

Typically ht is predetermined (known at t − 1) and tied to past consumption in some

way. Approaches vary, but they all assume ht/ct is stationary. The examples we study

have “external” habits: the agent ignores any impact of her consumption choices on

future values of ht. They differ in the functional form of f(ct, ht) and in the law of

motion for ht.

Two common functional forms are ratio and difference habits. With ratio habits,

f(ct, ht) = (ct/ht)ρ/ρ and ρ ≤ 1. The pricing kernel is

mt,t+1 = βgρ−1
t+1 (ht+1/ht)

−ρ. (20)

Because the habit is predetermined, it has no impact on one-period entropy. With

difference habits, f(ct, ht) = (ct − ht)ρ/ρ. The pricing kernel becomes

mt,t+1 = β

(
ct+1 − ht+1

ct − ht

)ρ−1

= βgρ−1
t+1 (st+1/st)

ρ−1 , (21)

where st = (ct − ht)/ct = 1 − ht/ct is the surplus consumption ratio. In both cases, we

gain an extra term relative to additive power utility.
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These models have different properties, but their long-horizon entropies are similar

to some version of power utility. Consider models that can be expressed in the form

mt,t+1 = βgεt+1dt+1/dt, (22)

where dt is stationary and ε is an exponent to be determined. Then long-horizon entropy

I(∞) is the same as for a power utility agent (18) with ρ − 1 = ε. Elements of this

proposition are reported by Bansal and Lehmann (1997) and Hansen (2012, Sections 7

and 8).

The proposition follows from the decomposition of the pricing kernel [equation (22)],

the definition of the principal eigenvalue and eigenfunction [equation (10)], and the

connection between the principal eigenvalue and long-horizon entropy [equation (11)].

Suppose an arbitrary pricing kernel mt,t+1 has principal eigenvalue λ and associated

eigenfunction et. Long-horizon entropy is I(∞) = log λ − E logmt,t+1. Now consider a

second pricing kernel m′

t,t+1 = mt,t+1dt+1/dt, with dt stationary. The same eigenvalue λ

now satisfies (10) with pricing kernel m′

t,t+1 and eigenfunction e′t = et/dt. Since dt is sta-

tionary, the logs of the two pricing kernels have the same mean: E log(mt,t+1dt+1/dt) =

E logmt,t+1. Thus they have the same long-horizon entropy. Power utility is a special

case with mt,t+1 = βgεt+1.

We illustrate the impact of this result on our examples, which we review in reverse

order. With difference habits, the pricing kernel (21) is already in the form of equation

(22) with ε = ρ − 1 and dt = sρ−1
t . With ratio habits, the pricing kernel (20) does not
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have the right form, because ht is not stationary in a growing economy. An alternative

is

mt,t+1 = βg−1
t+1[(ht+1/ct+1)/(ht/ct)]

−ρ,

which has the form of (22) with ε = −1 (corresponding to ρ = 0, log utility) and

dt = (ht/ct)−ρ. Bansal and Lehmann (1997, Section 3.4) report a similar decomposition

for a model with an internal habit.

Recursive utility can be expressed in approximately the same form. The pricing

kernel (17) can be written

mt,t+1 = βgα−1
t+1 [ut+1/µt(gt+1ut+1)]

α−ρ .

If µt is approximately proportional to ut, as suggested by Hansen (2012, Section 8.2),

then

mt,t+1
∼= β ′gα−1

t+1 (ut+1/ut)
α−ρ ,

where β ′ includes the constant of proportionality. The change from β to β ′ is irrele-

vant here, because entropy is invariant to such changes in scale. Thus the model has

(approximately) the form of (22) with ε = α− 1 and dt = uα−ρ
t .

All of these models are similar to some form of power utility at long horizons. We

will see shortly that they can be considerably different at short horizons.
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B. Models with constant variance

We derive specific pricing kernels for each of these preferences based on loglinear

processes for consumption growth and, for habits, the relation between the habit and

consumption. When the pricing kernels are not already loglinear, we use loglinear ap-

proximations. The resulting pricing kernels have the same form as the Vasicek model.

We use normal innovations in our numerical examples to focus attention on the models’

dynamics, but consider other distributions at some length in Section D. Parameters are

representative numbers from the literature chosen to illustrate the impact of preferences

on entropy and horizon dependence.

The primary input to the pricing kernels of these models is a consumption growth

process. We use the loglinear process

log gt = log g + γ(B)v1/2wt, (23)

where γ0 = 1,
∑

j γ
2
j < ∞, and iid innovations wt with mean zero, variance one, and

cumulant generating function k(s). With normal innovations, k(s) = s2/2.

With power utility (18) and the loglinear consumption growth process (23), the

pricing kernel takes the form

logmt,t+1 = constant + (ρ − 1)γ(B)v1/2wt+1.

Here the moving average coefficients (aj in Vasicek notation) are proportional to those

of the consumption growth process: a(B) = (ρ − 1)γ(B)v1/2, so aj = (ρ − 1)γjv1/2 for

all j ≥ 0. The infinite sum is A∞ = a(1) = (ρ − 1)γ(1)v1/2.
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With recursive utility, we derive the pricing kernel from a loglinear approximation of

(16),

log ut ≈ b0 + b1 log µt(gt+1ut+1), (24)

a linear approximation of log ut in logµt around the point log µt = logµ. See Hansen,

Heaton, and Li (2008, Section III). This is exact when ρ = 0, in which case b0 = 0

and b1 = β. the approximation used to derive long-horizon entropy. With the loglinear

approximation (24), the pricing kernel becomes

logmt,t+1 = constant + [(ρ − 1)γ(B) + (α − ρ)γ(b1)]v
1/2wt+1.

See Appendix E. The key term is

γ(b1) =
∞
∑

j=0

bj1γj,

the impact of an innovation to consumption growth on current utility. The action is in

the moving average coefficients. For j ≥ 1 we reproduce power utility: aj = (ρ−1)γjv1/2.

The initial term, however, is affected by γ(b1): a0 = [(ρ − 1)γ0 + (α − ρ)γ(b1)]v1/2. If

γ(b1) )= γ0, we can make a0 large and aj small for j ≥ 1, as needed, by choosing α and ρ

judiciously. The infinite sum is A∞ = a(1) = {(α − 1)γ(1) + (α− ρ)[γ(b1)− γ(1)]} v1/2,

which is close to the power utility result if γ(b1)− γ(1) is small.

With habits, we add the law of motion

log ht+1 = log h+ η(B) log ct.
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We set η(1) = 1 to guarantee that ht/ct is stationary. For the ratio habit model (20),

the log pricing kernel is

logmt,t+1 = constant + [(ρ − 1)− ρη(B)B]γ(B)v1/2wt+1.

Here a0 = (ρ−1)γ0v1/2 and A∞ = −γ(1)v1/2. The first is the same as power utility with

curvature 1− ρ, the second is the same as log utility (ρ = 0). The other terms combine

the dynamics of consumption growth and the habit.

For the difference habit model (21), the challenge lies in transforming the pricing ker-

nel into something tractable. We use a loglinear approximation. Define zt = log(ht/ct)

so that st = 1 − ezt . If zt is stationary with mean z = log h − log c, then a linear

approximation of log st around z is

log st ∼= constant − [(1− s)/s]zt = constant− [(1− s)/s] log(ht/ct),

where s = 1 − h/c = 1 − ez is the surplus ratio corresponding to z. The pricing kernel

becomes

logmt,t+1 = constant + (ρ− 1)(1/s)[1− (1− s)η(B)B]γ(B)v1/2wt+1.

Campbell (1999, Section 5.1) and Lettau and Uhlig (2000) have similar analyses. Here

a0 = (ρ − 1)(1/s)γ0v1/2, which differs from power utility in the (1/s) term, and A∞ =

(ρ− 1)γ(1)v1/2, which is the same as power utility.

We illustrate the properties of these models with numerical examples based on pa-

rameter values used in earlier work. We use the same consumption growth process in all

four models, which helps to align their long-horizon properties. We use an ARMA(1,1)
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that reproduces the mean, variance, and autocorrelations of Bansal and Yaron (2004,

Case I); see Appendix I. The moving average coefficients are γ0 = 1, γ1 = 0.0271, and

γj+1 = ϕgγj for j ≥ 1 with ϕg = 0.9790. This introduces a small but highly persistent

component to consumption growth. The mean is log g = 0.0015, the conditional vari-

ance is v2 = 0.00992, and the (unconditional) variance is 0.012. In the habit models, we

use Chan and Kogan’s (2002) AR(1) habit: η0 = 1− ϕh and ηj+1 = ϕhηj for j ≥ 0 and

0 ≤ ϕh < 1. We set ϕh = 0.9, which is between the Chan-Kogan choice of 0.7 and the

Campbell-Cochrane (1999) choice of 0.9885. Finally, we set the mean surplus s for the

difference habit model equal to one-half.

We summarize the properties of these models in Table II (parameters and selected

calculations), Figure 3 (moving average coefficients), and Figure 4 (entropy v. time

horizon). In each panel of Figure 3, we compare a representative agent model to the

Vasicek model of Section I.E. We use absolute values of coefficients in the figure to focus

attention on magnitudes.

Consider power utility with curvature 1 − α = 1 − ρ = 10. The comparison with

the Vasicek model suggests that the initial coefficient is too small (note the labels next

to the bars) and the subsequent coefficients are too large. As a result, the model has

too little one-period entropy and too much horizon dependence. We see exactly that

in Figure 4. The solid line at the center of the figure represents entropy for the power

utility case with curvature 1 − α = 1 − ρ = 10. One-period entropy (0.0049) is well

below our estimated lower bound (0.0100), the dotted horizontal line near the middle

of the figure. Entropy rises quickly as we increase the time horizon, which violates our

horizon dependence bounds (plus and minus 0.0010). The bounds are represented by

the two dotted lines near the bottom of the figure, centered at power utility’s one-period

entropy. The model exceeds the bound almost immediately. The increase in entropy
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with time horizon is, in this case, entirely the result of the positive autocorrelation of

the consumption growth process.

The recursive utility model, in contrast, has more entropy at short horizons and less

horizon dependence. Here we set 1−α = 10 and 1− ρ = 2/3, the values used by Bansal

and Yaron (2004). Recursive and power utility have similar long-horizon properties, in

particular, similar values for A∞ = a(1), the infinite sum of moving average coefficients.

Recursive utility takes some of this total away from later coefficients (aj for j ≥ 1)

by reducing 1 − ρ from 10 to 2/3, and adds it to the initial coefficient a0. As a result,

horizon dependence at 120 months falls from 0.0119 with power utility to 0.0011. This is

a clear improvement over power utility, but it is still slightly above our bound (0.0010).

Further, H(∞) of 0.0018 hints that entropy at longer horizons is inconsistent with the

tendency of long bond yields to level off or decline between 10 and 30 years. See, for

example, Alvarez and Jermann (2005, Figure 1).

The difference habit model has greater one-period entropy than power utility (the

effect of 1/s) but the same long-horizon entropy. In between it has negative horizon

dependence, the result of the negative autocorrelation in the pricing kernel induced by

the habit. Horizon dependence satisfies our bound at a horizon of 120 months, but

violates it for horizons between 4 and 93 months. Relative to power utility, this model

reallocates some of the infinite sum A∞ to the initial term, but it affects subsequent

terms in different ways. In our example, the early terms are negative, but later terms

turn positive. The result is nonmonotonic behavior of entropy, which is mimicked, of

course, by the mean yield spread.

The ratio habit model has, as we noted earlier, the same one-period entropy as

power utility with 1−ρ = 10. Like the difference habit, it has excessive negative horizon
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dependence at short horizons, but unlike that model, the same is true at long horizons,

too, as it approaches log utility (1− ρ = 1).

Overall, these models differ in both their one-period entropy and in their horizon

dependence. They are clearly different from each other. With the parameter values we

used, some of them have too little one-period entropy and all of them have too much

horizon dependence. The challenge is to clear both hurdles.

C. Models with stochastic variance

In the models of the previous section, all of the variability in the distribution of

the log pricing kernel is in its conditional mean. Here we consider examples proposed

by Bansal and Yaron (2004, Case II) and Campbell and Cochrane (1999) that have

variability in the conditional variance as well. They illustrate in different ways how

variation in the conditional mean and variance can interact in generating entropy and

horizon dependence.

One perspective on the conditional variance comes from recursive utility. The Bansal-

Yaron (2004, Case II) model is based on the bivariate consumption growth process

log gt = log g + γ(B)v1/2t−1wgt

vt = v + ν(B)wvt, (25)

where wgt and wvt are independent iid standard normal random variables. The first

equation governs movements in the conditional mean of log consumption growth, the

second movements in the conditional variance.
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This linear volatility process is analytically convenient, but it implies that vt is nor-

mal and therefore negative in some states. We think of it as an approximation to a

censored process v′t = max{0, vt}. We show in Appendix G that if the true conditional

variance process is v′t, then an approximation based on (25) is reasonably accurate for the

numerical examples reported below, where the stationary probability that vt is negative

is small.

With this process for consumption growth and the loglinear approximation (24), the

Bansal-Yaron pricing kernel is

logmt,t+1 = constant + [(ρ − 1)γ(B) + (α − ρ)γ(b1)]v
1/2
t wgt+1

+ (α − ρ)(α/2)γ(b1)
2[b1ν(b1)− ν(B)B]wvt+1.

See Appendix E. The coefficients of the consumption growth innovation wgt now vary

with vt, but they are otherwise the same as before. The volatility innovation wvt is

new. Its coefficients depend on the dynamics of volatility [represented by ν(b1)], the

dynamics of consumption growth [γ(b1)], and recursive preferences [(α−ρ)]. One-period

conditional entropy is

Lt(mt+1) = [(ρ − 1)γ0 + (α − ρ)γ(b1)]
2vt/2 + (α− ρ)2(α/2)2γ(b1)

4[b1ν(b1)]
2/2,

which now varies with vt. One-period entropy is the same with vt replaced by its mean

v, because the log pricing kernel is linear in vt.
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The pricing kernel looks like a two-shock Vasicek model, but the interaction between

the conditional variance and consumption growth innovations gives it a different form.

The pricing kernel can be expressed

logmt,t+1 = logm+ ag(B)(vt/v)
1/2wgt+1 + av(B)wvt+1

with

ag(B) = (ρ− 1)γ(B) + (α − ρ)γ(b1)

av(B) = (α − ρ)(α/2)γ(b1)
2[b1ν(b1)− ν(B)B].

In our examples, consumption growth innovations lead to positive horizon dependence,

just as in the previous section. Variance innovations lead to negative horizon dependence,

the result of the different signs of the initial and subsequent moving average coefficients

in av(B). The overall impact on horizon dependence depends on the relative magnitudes

of the two effects and the nonlinear interaction between the consumption growth and

conditional variance processes. See Appendix F.

We see the result in the first two columns of Table III. We follow Bansal and Yaron

(2004) in using an AR(1) volatility process, so that νj+1 = ϕvνj for j ≥ 1. With their

parameter values [column (1)], the stationary distribution of vt is normal with mean

v = 0.00992 = 9.8× 10−5 and standard deviation ν0/(1− ϕ2
v)

1/2 = 1.4× 10−5. The zero

bound is therefore almost 7 standard deviations away from the mean. The impact of the

stochastic variance on entropy and horizon dependence is small. Relative to the constant

variance case [column (2) of Table II], one-period entropy rises from 0.0214 to 0.0218

and 120-month horizon dependence from 0.0011 to 0.0012. This suggests that horizon

dependence is dominated, with these parameter values, by the dynamics of consumption
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growth. The increase in horizon dependence over the constant variance case indicates

that nonlinear interactions between the two processes are quantitatively significant.

We increase the impact if we make the “variance of the variance” larger, as in Bansal,

Kiku, and Yaron (2009). We do that in column (2) of Table III, where we increase ϕv

from 0.987 to 0.997. With this value, the unconditional standard deviation roughly

doubles and zero is a little more than three standard deviations from the mean. We

see that one-period entropy and horizon dependence both rise. The latter increases

slowly with maturity and exceeds our bound for maturities above 100 months. Bansal,

Kiku, and Yaron (2009) increase ϕv further to 0.999. This increases substantially the

probability of violating the zero bound and makes our approximation of the variance

process less reliable. Further exploration of this channel of influence likely calls for

some modification of the volatility process, such as the continuous-time square-root

process used by Hansen (2012, Section 8.3) or the discrete-time ARG process discussed

in Appendix H.

A second perspective comes from the Campbell-Cochrane (1999) habit model. They

suggest the nonlinear surplus process

log st+1 − log st = (ϕs − 1)(log st − log s) + λ(log st)v
1/2wt+1

1 + λ(log st) = v−1/2

[
(1− ρ)(1− ϕs)− b

(1− ρ)2

]1/2

(1− 2[log st − log s])1/2 ,

where wt is iid standard normal. The pricing kernel is then

logmt,t+1 = constant + (ρ− 1)(ϕs − 1)(log st − log s)

+ (ρ − 1) [1 + λ(log st)] v
1/2wt+1.
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The essential change from our earlier approximation of the difference habit model is that

the conditional variance now depends on the habit as well as the conditional mean. This

functional form implies one-period conditional entropy of

Lt(mt,t+1) = (ρ− 1)2[1 + λ(log st)]
2

= [(1− ρ)(1− ϕs)− b/2] + b(log st − log s).

One-period entropy is therefore I(1) = ELt(mt+1) = [(1− ρ)(1− ϕs)− b/2].

Campbell and Cochrane (1999) set b = 0. In this case, conditional entropy is constant

and horizon dependence is zero at all horizons. Entropy is governed by curvature 1− ρ

and the autoregressive parameter ϕs of the surplus. With their suggested values of

1 − ρ = 2 and ϕs = 0.9885 = 0.871/12, entropy is 0.0231, far more than we get with

additive power utility when 1 − ρ = 10 and comparable to Bansal and Yaron’s version

of recursive utility.

The mechanism is novel. The Campbell-Cochrane model keeps horizon dependence

low by giving the state variable log st offsetting effects on the conditional mean and

variance of the log pricing kernel. In its original form with b = 0, horizon dependence is

zero by construction. In later work, Verdelhan (2010) and Wachter (2006) study versions

of the model with nonzero values of b. The interaction between the mean and variance

is a useful device that we think is worth examining in other models, including those with

recursive preferences, where the tradition has been to make them independent.

These two models also illustrate how conditioning information could be used more

intensively. The conditional entropy bound (7) shows how the maximum excess return

varies with the state. With recursive preferences the relevant component of the state

is the conditional variance vt. With habits, the relevant state is the surplus st, but
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it affects conditional entropy only when b is nonzero. We do not explore conditioning

further here, but it strikes us as a promising avenue for future research.

D. Models with jumps

An influential body of research has developed the idea that departures from normal-

ity, including so-called disasters in consumption growth, can play a significant role in

asset returns. There is, moreover, strong evidence of nonnormality in both macroeco-

nomic data and asset returns. Prominent examples of this line of work include Barro

(2006), Barro, Nakamura, Steinsson, and Ursua (2009), Bekaert and Engstrom (2010),

Benzoni, Collin-Dufresne, and Goldstein (2011), Branger, Rodrigues, and Schlag (2011),

Drechsler and Yaron (2011), Eraker and Shaliastovich (2008), Gabaix (2012), Garcia,

Luger, and Renault (2003), Longstaff and Piazzesi (2004), Martin (2012), and Wachter

(2012). Although nonnormal innovations can be added to any model, we follow a number

of these papers in adding them to models with recursive preferences.

We generate departures from normality by decomposing the innovation in log con-

sumption growth into normal and “jump” components. Consider the process

log gt = log g + γ(B)v1/2wgt + ψ(B)zgt − ψ(1)hθ,

ht = h+ η(B)wht,

where {wgt, zgt, wht} are standard normal random variables, independent of each other

and across time. (Note that we are repurposing h and η here; we have run out of letters.)

The last term is constant: it adjusts the mean so that log g is, in fact, the mean of log gt.

The jump component zgt is a Poisson mixture of normals, a specification that has been

widely used in the options literature. Its central ingredient is a Poisson random variable
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j. At date t, j (the number of jumps, so to speak) takes on nonnegative integer values

with probabilities p(j) = e−ht−1hj
t−1/j!. The “jump intensity” ht−1 is the mean of j.

Each jump triggers a draw from a normal distribution with mean θ and variance δ2.

Conditional on the number of jumps, the jump component is normal with mean jθ and

variance jδ2. That makes zgt a Poisson mixture of normals, which is clearly not normal.

We use a linear process for ht with standard normal innovations wht. As with volatil-

ity, we think of this as an approximation to a censored process that keeps ht nonnegative.

We show in Appendix G that the approximation is reasonably accurate here, too, in the

examples we study.

With this consumption growth process and recursive utility, the pricing kernel is

logmt,t+1 = constant + [(ρ − 1)γ(B) + (α − ρ)γ(b1)]v
1/2wgt+1

+ [(ρ− 1)ψ(B) + (α− ρ)ψ(b1)]zgt+1

+ (α− ρ)[(eαψ(b1)θ+(αψ(b1)δ)2/2 − 1)/α][b1η(b1)− η(B)B]wht+1.

See Appendix E. The pricing kernel falls into the generalized Vasicek example of section

E when persistence of the normal and jump components is the same, γ(B) = ψ(B), and

the jump intensity is constant, ht = h.

Define α∗ − 1 = (ρ − 1)ψ0 + (α − ρ)ψ(b1) = (α − 1) + (α − ρ)[ψ(b1) − 1]. Then

one-period conditional entropy is

Lt(mt,t+1) = [(ρ− 1)γ0 + (α − ρ)γ(b1)]
2 v/2

+
{(

e(α
∗
−1)θ+[(α∗

−1)δ]2/2 − 1
)

− (α∗ − 1)θ
}

ht

+
{

(α − ρ)
[

(eαψ(b1)θ+[αψ(b1)δ]2/2 − 1)/α
]

b1η(b1)
}2

/2. (26)
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New features include the dynamics of intensity ht [η(b1)] and jumps [ψ(b1)]. Horizon de-

pendence includes nonlinear interactions between these features and consumption growth

analogous to those we saw with stochastic variance. See Appendix F.

We report properties of several versions in Table IV. The initial parameters of the

jump component zgt are taken from Backus, Chernov, and Martin (2011, Section III)

and are designed to mimic those estimated by Barro, Nakamura, Steinsson, and Ursua

(2009) from international macroeconomic data. The mean and variance of the normal

component are then chosen to keep the stationary mean and variance of log consumption

growth the same as in our earlier examples.

In our first example [column (1) of Table IV], both components of consumption

growth are iid. This eliminates the familiar Bansal-Yaron mechanism in which persis-

tence magnifies the impact of shocks on the pricing kernel. Nevertheless, the jumps

increase one-period entropy by a factor of ten relative to the normal case [column (1) of

Table II]. The key ingredient in this example is the exponential term exp{(α∗ − 1)θ +

[(α∗ − 1)δ]2/2} in (26). We know from earlier work that this function increases sharply

with 1 − α∗, as the nonnormal terms in (8) increase in importance. See, for example,

Backus, Chernov, and Martin (2011, Figure 2). Evidently setting 1− α∗ = 1− α = 10,

as it is here, is enough to have a large impact on entropy. The example shows clearly

that departures from normality are a significant potential source of entropy. And since

consumption growth is iid, horizon dependence is zero at all time horizons.

The next two columns show that when we introduce dynamics to this model, either

through intensity ht [column (2)] or by making consumption growth persistent [column

(3)], both one-period entropy and horizon dependence rise substantially. In column (2),

we use an AR(1) intensity process: ηj+1 = ϕhηj for j ≥ 0. We choose parameters to

keep ht far enough from zero for our approximation to be accurate. This requirement
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leads to a tiny value of the volatility of jump intensity, η0. One-period entropy increases

by a small amount, but horizon dependence is now two-and-a-half times our upper

bound. Evidently even this modest amount of volatility in ht is enough to drive horizon

dependence outside the range we established earlier.

In column (3), we reintroduce persistence in consumption growth. Intensity is con-

stant, but the normal and jump components of log consumption growth have the same

ARMA(1,1) structure we used in Section B. With intensity constant, the model is an

example of a Vasicek model with nonnormal innovations. The impact is dramatic. One-

period entropy and horizon dependence increase by orders of magnitude. The issue is

the dynamics of the jump component, represented by the lag polynomial ψ(B). Here

ψ(b1) = 1.58, which raises 1 − α∗ from 10 in column (1) to 15.4 and drives entropy

two orders of magnitude beyond our lower bound. It has a similar impact on horizon

dependence, which is now almost three orders of magnitude beyond our bound.

These two models illustrate the pros and cons of mixing jumps with dynamics. We

know from earlier work that jumps give us enormous power to generate large expected

excess returns. Here we see that when they come with dynamics, they can also generate

unreasonably large horizon dependence, which is inconsistent with the evidence on bond

yields.

The last example [column (4)] illustrates what we might do to reconcile the two: to

use jumps to increase one-period entropy without also increasing horizon dependence

to unrealistic levels. We cut the mean jump size θ in half, eliminate dynamics in the

jump (ψ1 = 0), and reduce the persistence of the normal component (by reducing ϕg

and increasing γ1). In this case, we exceed our lower bound on one-period entropy by a

factor of two and are well within our bounds for horizon dependence.
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We do not claim any particular realism for this example, but it illustrates what we

think could be a useful approach to modelling jumps. Since jumps have such a powerful

effect on entropy, we can rely less on the persistent component of consumption growth

that has played such a central role in work with recursive preferences since Bansal and

Yaron (2004).

III. Final thoughts

We’ve shown that an asset pricing model, represented here by its pricing kernel,

must have two properties to be consistent with the evidence on asset returns. The

first is entropy, a measure of the pricing kernel’s dispersion. Entropy over a given time

interval must be at least as large as the largest mean log excess return over the same time

interval. The second property is horizon dependence, a measure of the pricing kernel’s

dynamics derived from entropy over different time horizons. Horizon dependence must

be small enough to account for the relatively small premiums we observe on long bonds.

The challenge is to accomplish both at once: to generate enough entropy without

too much horizon dependence. Representative agent models with recursive preferences

and habits use dynamics to increase entropy, but as a result they often increase horizon

dependence as well. Figure 5 is a summary of how a number of representative agent

models do along these two dimensions. In the top panel we report entropy, which should

be above the estimated lower bound marked by the dotted line. In the bottom panel we

report horizon dependence, which should lie between the bounds also noted by dotted

lines.

We identify two approaches that we think hold some promise. One is to specify

interaction between the conditional mean and variance designed, as in the Campbell-
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Cochrane model, to reduce their impact on horizon dependence. See the bars labelled

CC. The other is to introduce jumps with little in the way of additional dynamics. An

example of this kind is labelled CI2 in the figure. All of these numbers depend on

parameter values and are therefore subject to change, but they suggest directions for

the future evolution of these models.
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Appendix A: Bond prices, yields, and forward rates

We refer to prices, yields, and forward rates on discount bonds throughout the paper.

Given a term structure of one of these objects, we can construct the other two. Let qnt

be the price at date t of an n-period zero-coupon bond, a claim to one at data t + n.

Yields y and forward rates f are defined from prices by

− log qnt = nynt =
n
∑

j=1

f j−1
t .

Equivalently, yields are averages of forward rates: ynt = n−1
∑n

j=1 f
j−1
t . Forward rates

can be constructed directly from bond prices by fn
t = log(qnt /q

n+1
t ).

A related concept is the holding period return. The one-period (gross) return on an

n-period bond is rnt,t+1 = qn−1
t+1 /q

n
t . The short rate is log r1t+1 = y1t = f 0

t .

Bond pricing follows directly from bond returns and the pricing relation (2). The

direct approach follows from the n-period return rt,t+n = 1/qnt . It implies

qnt = Etmt,t+n.

The recursive approach follows from the one-period return, which implies

qn+1
t = Et(mt,t+1q

n
t+1). (A1)

In words: an n+ 1-period bond is a claim to an n-period bond in one period.
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There is also a connection between bond prices and returns. An n-period bond price

is connected to its n-period return by

log qnt = −
n
∑

j=1

log rjt+j−1,t+j.

This allows us to express yields as functions of returns and relate horizon dependence

to mean returns.

These relations are exact. There are analogous relations for means in stationary

environments. Mean yields are averages of mean forward rates:

Eynt = n−1
n
∑

j=1

Ef j−1
t .

Mean log returns are also connected to mean forward rates:

E log rn+1
t,t+1 = E log qnt+1 − E log qn+1

t = Efn
t ,

where the t subscript in the last term simply marks the forward rate as a random variable

rather than its mean.

Appendix B: Entropy and Hansen-Jagannathan bounds

The entropy and Hansen-Jagannathan bounds play similar roles, but the bounds and

the maximum returns they imply are different. We describe them both, show how they

differ, and illustrate their differences further with an extension to multiple periods and

an application to lognormal returns.
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Bounds and returns. The HJ bound defines a high-return asset as one whose return

rt,t+1 maximizes the Sharpe ratio: given a pricing kernel mt,t+1, its excess return xt,t+1 =

rt,t+1 − r1t,t+1 maximizes SRt = Et(xt+1)/Vart(xt+1)1/2 subject to the pricing relation (2)

for n = 1. The maximization leads to the bound,

SRt = Et(xt,t+1)/Vart(xt,t+1)
1/2 ≤ Vart(mt,t+1)

1/2/Etmt,t+1,

and the return that hits the bound,

xt,t+1 = Et(xt,t+1) + [Et(mt,t+1)−mt,t+1] ·
Vart(xt,t+1)1/2

Vart(mt,t+1)1/2

rt,t+1 = xt,t+1 + r1t,t+1.

There is one degree of indeterminacy in xt,t+1: if xt,t+1 is a solution, then so is λxt,t+1

for λ > 0 (the Sharpe ratio is invariant to leverage). If we use the normalization

Vart(xt,t+1) = 1, the return becomes

rt,t+1 =
1 + Vart(mt,t+1)1/2

Et(mt,t+1)
+

Et(mt,t+1)−mt,t+1

Vart(mt,t+1)1/2
,

which connects it directly to the pricing kernel.

We can take a similar approach to the entropy bound. The bound defines a high-

return asset as one whose return rt,t+1 maximizes Et(log rt,t+1−log r1t,t+1) subject (again)

to the pricing relation (2) for n = 1. The maximization leads to the return

rt,t+1 = −1/mt,t+1 ⇔ log rt,t+1 = − logmt,t+1.

Its mean log excess return Et(log rt,t+1 − log r1t,t+1) hits the entropy bound (7).
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It’s clear, then, that the returns that attain the HJ and entropy bounds are different:

the former is linear in the pricing kernel, the latter loglinear. They are solutions to two

different problems.

Entropy and maximum Sharpe ratios. We find it helpful in comparing the two bounds

to express each in terms of the (conditional) cumulant-generating function of the log

pricing kernel. The approach is summarized in Backus, Chernov, and Martin (2011,

Appendix A.2) and Martin (2012, Section III.A). Suppose logmt,t+1 has conditional

cumulant-generating function kt(s). The maximum Sharpe ratio follows from the mean

and variance of mt,t+1:

Etmt,t+1 = ekt(1)

Vart(mt,t+1) = Et(m
2
t,t+1)− (Etmt,t+1)

2 = ekt(2) − e2kt(1).

The maximum squared Sharpe ratio is therefore

Vart(mt,t+1)/Et(mt,t+1)
2 = ekt(2)−2kt(1) − 1.

The exponent has the expansion

kt(2)− 2kt(1) =
∞
∑

j=1

κjt(2
j − 2)/j!,

a complicated combination of cumulants. In the lognormal case, cumulants above order

two are zero, kt(2)−2kt(1) = κ2t, and the squared Sharpe ratio is eκ2t−1. For small κ2 it’s

approximately κ2t and entropy is exactly κ2t/2, so the two reflect the same information.

Otherwise they do not.
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Lognormal settings. Suppose asset j’s return is conditionally lognormal: log rjt,t+1 is

normal with mean log r1t,t+1 + κj
1t and variance κj

2t). Our entropy bound focuses on the

mean log excess return:

Et(log r
j
t,t+1 − log r1t,t+1) = κj

1t.

That’s it.

The Sharpe ratio focuses on the simple excess return, xt,t+1 = rjt,t+1 − r1t,t+1, which

we’ll see reflect both moments of the log return. The mean and variance of the excess

return are

Et(xt,t+1) = r1t,t+1

(

eκ
j
1t+κj

2t/2 − 1
)

Vart(xt,t+1) =
(

r1t,t+1e
κj
1t+κj

2t/2
)2 (

eκ
j
2t − 1

)

.

The conditional Sharpe ratio is therefore

SRt =
Et(xt,t+1)

Vart(xt,t+1)1/2
=

eκ
j
1t+κj

2t/2 − 1

eκ
j
1t+κj

2t/2
(

eκ
j
2t − 1

)1/2
.

Evidently there are two ways to generate a large Sharpe ratio. The first is to have a

large mean log return: a large value of κj
1t. The second is to have a small variance: as

κj
2t approaches zero, so does the denominator.

Comparisons of Sharpe ratios thus reflect both the mean and variance of the log

return — and possibly higher-order cumulants as well. Binsbergen, Brandt, and Koijen

(2010) and Duffee (2010) are interesting examples. They show that Sharpe ratios for
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dividends and bonds, respectively, decline with maturity. In the former, this reflects a

decline in the mean, in the latter, an increase in the variance.

Varying the time horizon. We can get a sense of how entropy and the Sharpe ratio

vary with the time horizon by looking at the iid case. We drop the subscript t from k

(there’s no conditioning) and add a superscript n denoting the time horizon. In the iid

case, the n-period cumulant-generating function is n times the one-period function:

kn(s) = nk1(s).

The same is true of cumulants. As a result, entropy is proportional to n:

L(mt,t+n) = n
[

k1(1)− κ1

]

.

This is the zero horizon dependence result we saw earlier for the iid case. The time

horizon n is an integer in our environment, but if the distribution is infinitely divisible

we can extend it to any positive real number.

The maximum Sharpe ratio also varies with the time horizon. We can adapt our

earlier result:

Var(mt,t+n)/E(mt,t+n)
2 = ek

n(2)−2kn(1) − 1 = en[k
1(2)−2k1(1)] − 1.

For small time intervals n, this is approximately

en[k
1(2)−2k1(1)] − 1 ≈ n[k1(2)− 2k1(1)],
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which is also proportional to n. In general, however, the squared Sharpe ratio increases

exponentially with n.

Another perspective on dynamics comes from Chretien (2012), who notes that one-

and two-period bond prices are related to the first autocovariance of the pricing kernel

by

E(q2t )− E(q1t )
2 = Cov(mt,t+1, mt+1,t+2).

The left side is negative in US data, the price analog of an increasing mean yield curve.

The first autocorrelation is therefore

Corr(mt,t+1, mt+1,t+2) =
Cov(mt,t+1, mt+1,t+2)

Var(mt,t+1)
=

E(q2t )−E(q1t )
2

Var(mt,t+1)
.

The unconditional HJ bound gives us an upper bound on the variance,

Var(mt,t+1) ≥ SR2 E(q1t )
2,

which gives us bounds on the autocorrelation,

Corr(mt,t+1, mt+1,t+2) ≤
E(q2t )− E(q1t )

2

SR2E(q1t )2
≤ 0.

This is an interesting result, but it is more complicated than horizon dependence and

does not extend in any obvious way to horizons greater than two periods.
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Appendix C: Lag polynomials

We use notation and results from Hansen and Sargent (1980, Section 2) and Sargent

(1987, Chapter XI), who supply references to the related mathematical literature. Our

primary tool is the one-sided infinite moving average,

xt =
∞∑

j=0

ajwt−j = a(B)wt,

where {wt} is an iid sequence with zero mean and unit variance. This defines implicitly

the lag polynomial

a(B) =
∞
∑

j=0

ajB
j.

The lag or backshift operator B shifts what follows back one period in time: Bwt = wt−1,

B2wt = wt−2, and so on. The result is a stationary process if
∑

j a
2
j < ∞; we say the

sequence of aj ’s is square summable.

In this form, prediction is simple. If the information set at date t includes current

and past values of wt, forecasts of future values of xt are

Etxt+k = Et

∞
∑

j=0

ajwt+k−j =
∞
∑

j=k

ajwt+k−j = [a(B)/Bk]+wt

for k ≥ 0. We simply chop off the terms that involve future values of w. The subscript

“+” applied to the final expression is compact notation for the same thing: it means

ignore negative powers of B.
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We use the ARMA(1,1) repeatedly:

ϕ(B)xt = θ(B)v1/2wt

with ϕ(B) = 1 − ϕB and θ(B) = 1 − θB. Special cases include the AR(1) (set θ =

0) and the MA(1) (set ϕ = 0). The infinite moving average representation is xt =

[ϕ(B)/θ(B)]v1/2wt = a(B)v1/2wt, with a0 = 1, a1 = ϕ − θ, and aj+1 = ϕj(ϕ − θ) for

 ≥ 1. We typically choose ϕ and a1, leaving θ implicit. Then aj+1 = ϕja1 = ϕaj for

j ≥ 1. An AR(1) has aj+1 = ϕaj for j ≥ 0.

Appendix D: Bond prices, yields, and returns in the Vasicek

model

Consider the pricing kernel (12) for the Vasicek model of Section E. We show that

the proposed forward rates (13) satisfy the pricing relation qn+1
t = Et(mt,t+1qnt+1).

The proposed forward rates imply bond prices of

log qnt =
n
∑

j=1

f j−1
t = n logm+

n
∑

j=1

k(Aj−1) +
∞
∑

j=0

(An+j − Aj)wt−j .

Therefore

log(mt,t+1q
n
t+1) = (n + 1) logm+

n
∑

j=1

k(Aj−1) + Anwt+1 +
∞
∑

j=0

(An+1+j −Aj)wt−j .
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The next step is to evaluate logEt(mt,t+1qnt+1). The only stochastic term is logEt(eAnwt+1),

which is the cumulant generating function k(s) evaluated at s = An. Therefore we have

logEt(mt,t+1q
n
t+1) = (n + 1) logm+

n+1
∑

j=1

k(Aj−1) +
∞
∑

j=0

(An+1+j − Aj)wt−j ,

which is log qn+1
t . Thus the proposed forward rates and associated bond prices satisfy

the pricing relation as stated.

Appendix E: The recursive utility pricing kernel

We derive the pricing kernel for a representative agent model with recursive util-

ity, loglinear consumption growth dynamics, stochastic volatility, and jumps with time-

varying intensity. The recursive utility models in Sections II.B, II.C, and II.D are all

special cases.

The consumption growth process is

log gt = log g′ + γ(B)v1/2t−1wgt + ψ(B)zgt

vt = v + ν(B)wvt

ht = h+ η(B)wht,

where {wgt, wvt, wht} are independent standard normals and log g′ = log g − ψ(1)hθ.

The jump component zgt is a Poisson mixture of normals: conditional on the number of

jumps j, zgt is normal with mean jθ and variance jδ2. The probability of j ≥ 0 jumps

at date t+ 1 is e−hthj
t/j!.
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Given a value of b1, we use equation (24) to characterize the value function and

substitute the result into the pricing kernel (17). Our use of value functions mirrors

Hansen, Heaton, and Li (2008) and Hansen and Scheinkman (2009). Our use of lag

polynomials mirrors Hansen and Sargent (1980) and Sargent (1987).

The certainty equivalents needed for the recursion (24) are closely related to the

cumulant generating functions of the relevant random variables. Consider an arbi-

trary random variable yt+1 whose conditional cumulant generating function is kt(s; y) =

logEt(esyt+1). Then the log of the certainty equivalent (15) of eat+btyt+1 is

log µt(e
at+btyt+1) = at + kt(αbt)/α.

We use two kinds of cgf’s below: For the standard normals, we have kt(s;wt+1) = s2/2.

For the jump component, we have kt(s; zt+1) = (esθ+(sδ)2/2 − 1)ht. Both functions occur

repeatedly in what follows.

We find the value function by guess and verify:

• Guess. We guess a value function of the form

log ut = log u+ pg(B)v1/2t−1wgt + pz(B)zgt + pv(B)wvt + ph(B)wht

with parameters (u, pg, pz, pv, ph) to be determined.

• Compute certainty equivalent. Given our guess, log(gt+1ut+1) is

log(gt+1ut+1) = log g′ + log u+ [γ(B) + pg(B)]v1/2t wgt+1 + [ψ(B) + pz(B)]zgt+1

+ pv(B)wvt+1 + ph(B)wht+1

= log(g′u) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1
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+ [ψ(B) + pz(B)− (ψ0 + pz0)]zgt+1 + [pv(B)− pv0]wvt+1

+ [ph(B)− ph0]wht+1 + (γ0 + pg0)v
1/2
t wgt+1

+ pv0wvt+1 + ph0wht+1 + (ψ0 + pz0)zgt+1.

We use a clever trick here from Sargent (1987, Section XI.19): we rewrite (for

example) pv(B)wvt+1 = (pv(B)− pv0)wvt+1 + pv0wvt+1. As of date t, the first term

is constant (despite appearances, it doesn’t depend on wvt+1) but the second is not.

The other terms are treated the same way. As a result, the last line consists of

innovations, the others of (conditional) constants. The certainty equivalent treats

them differently:

log µt(gt+1ut+1) = log(g′u) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ [ψ(B) + pz(B)− (ψ0 + pz0)]zgt+1

+ [pv(B)− pv0]wvt+1 + [ph(B)− ph0]wht+1

+ (α/2)(γ0 + pg0)
2vt + (α/2)(p2v0 + p2h0)

+ [(eα(ψ0+pz0)θ+(α(ψ0+pz0)δ)2/2 − 1)/α]ht

= log(g′u) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ [ψ(B) + pz(B)− (ψ0 + pz0)]zgt+1

+ [pv(B)− pv0]wvt+1 + [ph(B)− ph0]wht+1

+ (α/2)(γ0 + pg0)
2[v + ν(B)wvt] + (α/2)(p2v0 + p2h0)

+ [(eα(ψ0+pz0)θ+(α(ψ0+pz0)δ)2/2 − 1)/α][h+ η(B)wht].
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• Verify. We substitute the certainty equivalent into (24) and solve for the parame-

ters. Matching like terms, we have

constant : log u = b0 + b1[log(g
′u) + (α/2)(p2v0 + p2h0) + (α/2)(γ0 + pg0)

2v]

+ b1[(e
α(ψ0+pz0)θ+(α(ψ0+pz0)δ)2/2 − 1)/α]h

v1/2t−1wgt+1 : pg(B)B = b1 [γ(B) + pg(B)− (γ0 + pg0)]

zgt+1 : pz(B)B = b1 [ψ(B) + pz(B)− (ψ0 + pz0)]

wvt+1 : pv(B)B = b1
[

pv(B)− pv0 + (α/2)(γ0 + pg0)
2ν(B)B

]

wht+1 : ph(B)B = b1

×
[

ph(B)− ph0 + [(eα(ψ0+pz0)θ+(α(ψ0+pz0)δ)2/2 − 1)/α]η(B)B
]

.

The second equation leads to forward-looking geometric sums like those in Hansen

and Sargent (1980, Section 2) and Sargent (1987, Section XI.19). Following their

lead, we set B = b1 to get γ0 + pg0 = γ(b1). The other coefficients of pg(B) are of

no concern to us: they don’t show up in the pricing kernel. The third equation is

similar and implies ψ0 + pz0 = ψ(b1). In the fourth equation, setting B = b1 gives

us pv0 = (α/2)γ(b1)2b1ν(b1). Proceeding the same way with the fifth equation

gives us ph0 = [(eαψ(b1)θ+(αψ(b1)δ)2/2 − 1)/α]b1η(b1). For future reference, define

D = (α/2)γ(b1)2 and J = [(eαψ(b1)θ+(αψ(b1)δ)2/2 − 1)/α].

Now that we know the value function, we construct the pricing kernel from (17).

One component is

log(gt+1ut+1)− log µt(gt+1ut+1) = −Dv − Jh− (α/2)
{

[Db1ν(b1)]
2 + [Jb1η(b1)]

2
}

+ γ(b1)v
1/2
t wgt+1 + ψ(b1)zgt+1

+ D[b1ν(b1)− ν(B)B]wvt+1
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+ J [b1η(b1)− η(B)B]wht+1,

a combination of innovations to future utility and adjustments for risk. The pricing

kernel is

logmt,t+1 = log β + (ρ − 1) log g

− (α − ρ)(Dv − Jh)− (α − ρ)(α/2)
{

[Db1ν(b1)]
2 + [Jb1η(b1)]

2
}

+ [(ρ − 1)γ(B) + (α − ρ)γ(b1)]v
1/2
t wgt+1

+ [(ρ − 1)ψ(B) + (α − ρ)ψ(b1)]zgt+1

+ (α − ρ)D[b1ν(b1)− ν(B)B]wvt+1

+ (α − ρ)J [b1η(b1)− η(B)B]wht+1.

The special cases used in the paper come from setting some terms equal to zero.

Appendix F: Horizon dependence with recursive models

We derive horizon dependence for the model described in Appendix E. The pricing

kernel has the form

logmt,t+1 = logm+ ag(B)(vt/v)
1/2wgt+1 + az(B)zgt+1 + av(B)wvt+1 + ah(B)wht+1

vt = v + ν(B)wvt

ht = h + η(B)wht
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with {wgt, wvt, zgt, wht} defined above. This differs from the Vasicek model in the roles of

vt in scaling wgt and of the intensity ht in the jump component zgt. For future reference,

we define the partial sums Axn =
∑n

j=0 axj for x = g, v, h, z.

We derive entropy and horizon dependence using (3) and its connection to bond

prices: qnt = Etmt,t+n. Recursive pricing of bonds gives us

log qn+1
t = logEt(mt,t+1q

n
t+1).

Suppose bond prices have the form

log qnt+1 = γn
0 + γn

g (B)(vt/v)
1/2wgt+1 + γn

v (B)wvt+1 + γn
h(B)wht+1 + γn

z (B)zt+1. (F1)

Then we have

log(mt,t+1q
n
t+1) = logm+ γn

0 +
[

ag(B) + γn
g (B)

]

(vt/v)
1/2wgt+1 + [av(B) + γn

v (B)]wvt+1

+ [az(B) + γn
z (B)] zgt+1 + [ah(B) + γn

h(B)]wht+1.

Evaluating the expectation and lining up terms gives us

γn+1
0 = logm+ γn

0 +
[

(ag0 + γn
g0)

2 + (av0 + γn
v0)

2 + (ah0 + γn
h0)

2
]

/2

+ h(e(az0+γn
z0)θ+((az0+γn

z0)δ)
2/2 − 1)

γn+1
gj = γn

gj+1 + agj+1

γn+1
vj = γn

vj+1 + avj+1 + (ag0 + γn
g0)

2νj/(2v)

γn+1
hj = γn

hj+1 + ahj+1 + (e(az0+γn
z0)θ+((az0+γn

z0)δ)
2/2 − 1)ηj

γn+1
zj = γn

zj+1 + azj+1.
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The second and fourth equations mirror the Vasicek model:

γn
gj =

n
∑

i=1

agj+i = Agn+j − Agj

γn
zj =

n
∑

i=1

azj+i = Azn+j − Azj.

The third equation implies

γn
vj = Avn+j −Avj + (2v)−1

n−1
∑

i=0

νj+n−1−iA
2
gi.

The fourth equation implies

γn
hj = Ahn+j −Ahj +

n−1
∑

i=0

ηj+n−1−i(e
Aziθ+(Aziδ)2/2 − 1).

The first equation implies

γn
0 = n logm+

1

2

n
∑

j=1

A2
gj−1 +

1

2

n
∑

j=1

A2
zj−1 + h

n
∑

j=1

(eAzj−1θ+(Azj−1δ)2/2 − 1)

+
1

2

n
∑

j=1

[

Avj−1 + (2v)−1
j−2
∑

i=0

νj−2−iA
2
gi

]2

+
1

2

n
∑

j=1

[

Ahj−1 +
j−2
∑

i=0

ηj−2−i(e
Aziθ+(Aziδ)2/2 − 1)

]2

.

If subscripts are beyond their bounds, the expression is zero.

Horizon dependence is determined by unconditional expectations of yields. The zg

component in the log-price (F1) is nonzero, so we have to take this into account:

E(γn
z (B)zt+1) = θhγn

z (1) = θh
∞
∑

j=0

(Azn+j − Azj).
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Horizon dependence is therefore

H(n) = (2n)−1
n
∑

j=1

(A2
gj−1 − A2

g0) + (2n)−1
n
∑

j=1

(A2
zj−1 −A2

z0)

+ hn−1
n
∑

j=1

(

eAzj−1θ+(Azj−1δ)2/2 − eAz0θ+(Az0δ)2/2
)

+ (2n)−1
n
∑

j=1





(

Avj−1 + (2v)−1
j−2
∑

i=0

νj−2−iA
2
gi

)2

−A2
v0





+ (2n)−1
n
∑

j=1





(

Ahj−1 +
j−2
∑

i=0

ηj−2−i(e
Aziθ+(Aziδ)2/2 − 1)

)2

− A2
h0





+ n−1θhγn
z (1)− θhγ1

z (1).

Appendix G: Assessing the loglinear approximation

We employ the discrete-grid algorithm of Tauchen (1986) to compute approximate

numerical solutions of recursive utility models and compare them to the loglinear approx-

imations used in the paper. This approach generates an arbitrarily good approximation

of the value function and related objects if we use a sufficiently fine grid. We compute

such approximations for two models: one with stochastic variance and another with

stochastic jump intensity. In each case, there are two sources of nonlinearity: the time

aggregator (16) and the censored distributions of the variance and intensity.

Stochastic variance. We use an equivalent state-space representation of consumption

growth dynamics:

log gt = log g + xt−1 + v′1/2t−1wgt

xt = ϕgxt−1 + γ1v
′1/2
t−1wgt
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vt = (1− ϕv)v + ϕvvt−1 + ν0wvt

v′t = max{0, vt}.

The goal is to compute a numerical approximation of the scaled value function ut as a

function of the state (xt, vt). In our calculations, we use the parameter values reported

in column (2) of Table 3.

We approximate the law of motion of the state with finite-state Markov chains. We

construct a discrete version of vt that assumes values given by a grid of one hundred

equally-spaced points. We label the distance between points εv. The points are centered

at the mean v and extend five standard deviations in each direction. In the notation of

the model, vt covers the interval [v−5ν0/(1−ϕ2
v)

1/2, v+5ν0/(1−ϕ2
v)

1/2]. Since the mean

is more than five standard deviations from zero in this case, there is no censoring in the

discrete approximation: v′t = max{0, vt} = vt. The only nonlinearity in this model is in

the time aggregator.

Probabilities are assigned as Tauchen suggests. Since the conditional distribution of

vt is normal, we define probabilities using Φ(·; a, b), the distribution function for a normal

random variable with mean a and standard deviation b. The transition probabilities are

Πv
ij ≡ Prob(vt = vi|vt−1 = vj)

= Φ
[

vi +
εv
2
; (1− ϕv)v + ϕvvj , ν0

]

− Φ
[

vi −
εv
2
; (1− ϕv)v + ϕvvj , ν0

]

.

When v = v1 (the first grid point), we set the second term equal to zero, and when

v = v100 (the last grid point), we set the first term equal to one.

The state variable xt has a one-step-ahead distribution that is conditional on both

xt−1 and vt−1. We choose a fixed grid for xt that takes two hundred equally-spaced
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values on an interval five standard deviations either side of its mean. Since we want this

grid to remain fixed for all values of the conditional variance, we use the largest value

on the grid for vt to set this interval. Transition probabilities are then

Πx
ijk ≡ Prob(xt = xi|xt−1 = xj , vt−1 = vk)

= Φ
[

xi +
εx
2
;ϕxxj , γ1v

1/2
k

]

− Φ
[

xi −
εx
2
;ϕxxj , γ1v

1/2
k

]

.

Again, we set the second term equal to zero for the first point and the first term equal

to one for the last one.

With these inputs, we can compute a discrete approximation to the value function:

scaled utility ut defined over the grid of states (xi, vj). The Markov chain for xt implies

an approximation for the shock wgt of

wijk =

(

xi −
∑

l

Πx
ljkxl

)

/v1/2k ,

which implies a consumption growth process with states

gijk = exp
(

log g + xj + v1/2k wijk

)

.

The scaled value function is a function of the states xt and vt and solves the system of

equations

uij =






(1− β) + β

[

∑

k

∑

l

Πx
kijΠ

v
lj(uklgkij)

α

]ρ/α






1/ρ

.
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We compute a solution by value function iteration: we substitute an initial guess {uij(0)}

on the right-hand side, which generates a new value {uij(1)}. We repeat this process

until the largest percentage change is smaller than 10−5.

The approximation is highly accurate. In the top panel of Figure 6, we plot the

discrete-grid and loglinear approximations of the value function against the state vari-

able vt with xt = 0. The two solutions are literally indistinguishable in the figure. We

superimpose the ergodic distribution of the conditional variance to provide some guid-

ance on the relative importance of different regions of the state space. We find similar

agreement with other values of xt−1, with plots of the value function versus xt, and for

calculations of entropy and horizon dependence. These conclusions are not affected by

refining the grid or tightening the convergence criterion.

The discrete-grid approximation yields I(1) = 0.0253 and H(120) = 0.0014. If we

use the loglinear approximation but keep the same state space as in the discrete-grid

approximation, we obtain I(1) = 0.0254 and H(120) = 0.0014. Therefore, the loglinear

approximation has almost no effect on the entropy computations. In case of the analyti-

cal loglinear approximation where the state space allows for negative values of variance,

I(1) = 0.0249 and H(120) = 0.0014 (column (2) of Table III). This small discrepancy in

I(1) arises from approximating the true variance with a process that allows for negative

values. Neither approximation affects the horizon dependence.

Stochastic jump intensity. The state-space representation of consumption growth

dynamics in this case is

log gt = log g′ + v1/2wgt + zgt

zgt|j ∼ N(jθ, jδ2)
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Prob(j) = exp(−h′

t−1)h
′j
t−1/j!

ht = (1− ϕh)h+ ϕhht−1 + η0wht

h′

t = max{0, ht}.

This model has a single state variable, ht. We use parameter values from column (2) of

Table 4.

We discretize the Poisson intensity ht on a grid of one hundred equally-spaced points

covering the interval [h− 5η0/(1− ϕ2
h)

1/2, h+ 5η0/(1− ϕ2
h)

1/2]. We calculate transition

probabilities using the same procedure as for the conditional variance process above.

The true intensity is calculated from its normal counterpart by h′

t = max{0, ht}. For

the jump zgt, we use ten Gauss-Hermite quadrature values, appropriately recentered and

rescaled, as the discrete values, along with their associated probabilities. We truncate j

at five. The scaled value function solves an equation analogous to the previous case and

we use the same method to solve it.

We plot the results in the second panel of Figure 6. Here we see some impact

from censoring. The ergodic distribution of intensity ht has a small blip at the left end

reflecting censoring at zero. The effect is small, because zero is three standard deviations

from the mean. This results in curvature of the value function as we approach zero, but

it’s too small to see in the figure.

The discrete-grid approximation yields I(1) = 0.0490 and H(120) = 0.0025. The

loglinear approximation, with the same state space produces the same values. In case of

the analytical loglinear approximation where the state space allows for negative values of

jump intensity, I(1) = 0.0502 and H(120) = 0.0025 (column (2) of Table IV). Therefore,

as is the case with stochastic variance, the loglinear approximation has almost no effect
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on entropy. The small discrepancy in I(1) arises from approximating the true jump

intensity with a process that allows for negative values. Neither approximation affects

the horizon dependence.

Appendix H: Models based on ARG processes

We like the simplicity and transparency of linear processes; expressions like ν(b1)

summarize clearly and cleanly the impact of volatility dynamics. A less appealing fea-

ture is that they allow the conditional variance vt and intensity ht to be negative, as

we have noted. Here we describe and solve an analogous model based on ARG(1) pro-

cesses, discrete-time analogs of continuous-time square root processes. See, for example,

Gourieroux and Jasiak (2006) and Le, Singleton, and Dai (2010). The analysis parallels

Appendix E.

Consider the consumption process

log gt = log g + γ(B)v1/2t−1wgt + zgt

vt ∼ ARG(cv,ϕv, δv)

ht ∼ ARG(ch,ϕh, δh)

The first-order autoregressive gamma for vt and ht implies

vt = δvcv + ϕvvt−1 + wvt

ht = δhch + ϕhht−1 + wht,
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where wvt and wht are martingale difference sequences with conditional variances equal

to δvc2v + 2ϕvcvvt−1 and δhc2h + 2ϕhchht−1. The cgfs for vt and ht are:

kt(s; vt+1) = ϕvs(1− scv)
−1vt − δv log(1− scv)

kt(s; ht+1) = ϕhs(1− sch)
−1ht − δh log(1− sch)

If one selects the ARG inputs

vt ∼ ARG(σ2
v/2,ϕv, (1− ϕv)v/(σ

2
v/2))

ht ∼ ARG(σ2
h/2,ϕh, (1− ϕh)h/(σ

2
h/2)),

then

vt = (1− ϕv)v + ϕvvt−1 + wvt

ht = (1− ϕh)h + ϕhht−1 + wht,

with variances of shocks equal to σ2
v [(1−ϕv)v/2+ϕvvt−1] and σ2

h[(1−ϕh)h/2+ϕhht−1]

and cgfs:

kt(s; vt+1) = ϕvs(1− sσ2
v/2)

−1vt − (1− ϕv)v log(1− sσ2
v/2)/(σ

2
v/2)

kt(s; ht+1) = ϕhs(1− sσ2
h/2)

−1ht − (1− ϕh)h log(1− sσ2
h/2)/(σ

2
h/2)

We start with the value function:

• Guess. We guess a value function of the form

log ut = log u+ pg(B)v1/2t−1wgt + pvvt + phht
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with parameters to be determined.

• Compute. Since log(gt+1ut+1) is

log(gt+1ut+1) = log(gu) + [γ(B) + pg(B)]v1/2t wgt+1 + zgt+1 + pvvt+1 + phht+1

= log(gu) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ (γ0 + pg0)v
1/2
t wgt+1 + zgt+1 + pvvt+1 + phht+1,

its certainty equivalent is

log µt(gt+1ut+1) = log(gu) + [γ(B) + pg(B)− (γ0 + pg0)]v
1/2
t wgt+1

+ (α/2)(γ0 + pg0)
2vt + [(eαθ+(αδ)2/2 − 1)/α]ht

− δv/α log(1− αpvcv) + ϕvpv(1− αpvcv)
−1vt

− δh/α log(1− αphch) + ϕhph(1− αphch)
−1ht

• Verify. We substitute the certainty equivalent into (24) and collect similar terms:

constant : log u = b0 + b1[log(gu)− δv/α log(1− αpvcv)− δh/α log(1− αphch)]

v1/2t−1wgt : pg(B) = b1

[
γ(B) + pg(B)− (γ0 + pg0)

B

]

vt : pv = b1[(α/2)(γ0 + pg0)
2 + ϕvpv(1− αpvcv)

−1]

ht : ph = b1[(e
αθ+(αδ)2/2 − 1)/α+ ϕhph(1− αphch)

−1].

The second equation is the same one we saw in Appendix E and has the same

solution: γ0 + pg0 = γ(b1).

The third and fourth equations are new. Their quadratic structure is different from

anything we’ve seen so far, but familiar to anyone who has worked with square-root
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processes. The quadratic terms arise because risk to future utility depends on ht

and vt through their innovations. We solve them using value function iterations:

starting with zero, we substitute a value into the right side and generate a new value

on the left. If this converges, we have the solution as the limit of a finite-horizon

problem.

Another approach is to solve the quadratic equations directly and select the ap-

propriate root. The third equation implies

0 = αcvp
2
v + bpvpv + b1α(γ0 + pg0)

2/2

bpv = b1ϕv − b1cvα
2(γ0 + pg0)

2/2− 1.

It has two real roots :

pv =
−bpv ±

[

b2pv − 2b1cvα2(γ0 + pg0)2
]1/2

2αcv
.

If the variance of log gt is equal to zero, pv = 0 only if we select the smaller root.

Similar logic applies to ph. The fourth equation implies

0 = αchp
2
h + bphph + b1(e

αθ+(αδ)2/2 − 1)/α,

bph = b1ϕh − b1ch(e
αθ+(αδ)2/2 − 1)− 1.

The two roots are

ph =
−bph ±

[

b2ph − 4b1ch(eαθ+(αδ)2/2 − 1)
]1/2

2αch
.
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Again, the discriminant must be positive. If it is, stability leads us to choose the

smaller root.

Given these value function coefficients, the pricing kernel is

logmt,t+1 = log β + (ρ− 1) log g + (α − ρ)(δv log(1− αpvcv)/α+ δh log(1− αphch)/α)

+ (α − 1)zgt+1 + [(ρ− 1)γ0 + (α− ρ)γ(b1)]v
1/2
t wgt+1

+ (ρ − 1)[γ(B)/B]+v
1/2
t−1wgt

+ (α − ρ)
{

pvvt+1 − [α(γ0 + pg0)
2/2 + φvpv(1− αcvpv)

−1]vt
}

+ (α − ρ)
{

phht+1 − [(eαθ+(αδ)2/2 − 1)/α+ φhph(1− αchph)
−1]ht

}

.

Appendix I: Parameter values for models with recursive utility

Bansal-Yaron models. The Bansal-Yaron growth rate process is the sum of an AR(1)

and white noise. It implies, using their notation,

Var(log g) = σ2 + (ϕeσ)
2/(1− ρ2)

Cov(log gt, log gt−1) = ρ(ϕeσ)
2/(1− ρ2)

Corr(log gt log gt−1) = Cov(log gt, log gt−1)/Var(log g) ≡ ρ(1).

With input from their Table I (ρ = 0.979, σ = 0.0078, ϕe = 0.044), the unconditional

standard deviation is 0.0080 and the first autocorrelation is ρ(1) = 0.0436.
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We construct an ARMA(1,1) with the same autocovariances. The essential parame-

ters are (γ0, γ1,ϕg), with the rest of the MA coefficients defined by γj+1 = ϕgγj = ϕj
gγ1

for j ≥ 1. Set γ0 = 1. This implies

Var(log g) = v[1 + γ2
1/(1− ϕ2

g)]

Cov(log gt, log gt−1) = v[γ1 + ϕgγ
2
1/(1− ϕ2

g)]

Corr(log gt, log gt−1) =
γ1 + ϕgγ2

1/(1− ϕ2
g)

1 + γ2
1/(1− ϕ2

g)
.

We set ϕg = 0.979 (BY’s ρ). We choose γ1 to match the autocorrelation ρ(1), which

gives us a quadratic in γ1:

[ϕg − ρ(1)]γ2
1 + (1− ϕ2

g)γ1 − ρ(1)(1− ϕ2
g) = 0.

We choose the root associated with an invertible moving average coefficient for reasons

outlined in Sargent (1987, Section XI.15), which implies

γ1 =
−(1 − ϕ2

g)
2 +

{

(1− ϕ2
g) + 4[ϕg − ρ(1)](1− ϕ2

g)ρ(1)
}1/2

2[ϕg − ρ(1)]
= 0.0271.

Jump models. Our starting point is the intensity process ht used by Wachter (2012,

Table I). Most of that consists of converting continuous-time objects to discrete time

with a monthly time interval that we represent by τ = 1/12. We use the same mean

value h we used in our iid example: h = 0.01τ . Monthly analogs to her parameters

follow (analogs on the left, hers on the right):

ϕh = e−κτ = e−0.08/12 = 0.9934

η0 = λ̄1/2σλτ
1/2 = 0.03551/2 · 0.067 · (1/12)1/2 = 0.0036.
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The process gives us a significant probability of negative intensity, which Wachter avoids

by using a square-root process. We scale ϕh and η0 back significantly, to 0.95 and

0.0001, respectively. Nevertheless, Table IV shows a significant contribution to horizon

dependence from stochastic jump intensity.

Finding b1. We’ve described approximate solutions to recursive models given value

of the approximating constants b0 and b1. We construct a fine grid over both and choose

the values that come closest to satisfying equation (24).
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Table I

Properties of monthly excess returns

Entries are sample moments of monthly observations of (monthly) log excess returns:
log r−log r1, where r is a (gross) return and r1 is the return on a one-month bond. Sample
periods: S&P 500, 1927-2008 (source: CRSP), Fama-French, 1927-2008 (source: Ken-
neth French’s website); nominal bonds, 1952-2008 (source: Fama-Bliss dataset, CRSP);
currencies, 1985-2008 (source: Datastream); options, 1987-2005 (source: Broadie, Cher-
nov and Johannes, 2009). For options, OTM means out-of-the-money and ATM means
at-the-money.

Standard Excess
Asset Mean Deviation Skewness Kurtosis

Equity
S&P 500 0.0040 0.0556 −0.40 7.90
Fama-French (small, low) −0.0030 0.1140 0.28 9.40
Fama-French (small, high) 0.0090 0.0894 1.00 12.80
Fama-French (large, low) 0.0040 0.0548 −0.58 5.37
Fama-French (large, high) 0.0060 0.0775 −0.64 11.57
Equity options
S&P 500 6% OTM puts (delta-hedged) −0.0184 0.0538 2.77 16.64
S&P 500 ATM straddles −0.6215 1.1940 −1.61 6.52
Currencies
CAD 0.0013 0.0173 −0.80 4.70
JPY 0.0001 0.0346 0.50 1.90
AUD −0.0015 0.0332 −0.90 2.50
GBP 0.0035 0.0316 −0.50 1.50
Nominal bonds
1 year 0.0008 0.0049 0.98 14.48
2 years 0.0011 0.0086 0.52 9.55
3 years 0.0013 0.0119 −0.01 6.77
4 years 0.0014 0.0155 0.11 4.78
5 years 0.0015 0.0190 0.10 4.87
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Table II

Representative agent models with constant variance

The columns summarize the properties of representative-agent pricing kernels when the
variance of consumption growth is constant. See Section II.B. The consumption growth
process is the same for each one, an ARMA(1,1) version of equation (23) in which
γj+1 = ϕgγj for j ≥ 1. Parameter values are γ0 = 1, γ1 = 0.0271, ϕg = 0.9790, and
v1/2 = 0.0099.

Power Recursive Ratio Difference
Utility Utility Habit Habit

Parameter or property (1) (2) (3) (4)

Preference parameters
ρ −9 1/3 −9 −9
α −9 −9
β 0.9980 0.9980 0.9980 0.9980
ϕh 0.9000 0.9000
s 1/2
Derived quantities
b1 0.9978
γ(b1) 2.165
γ(1) 2.290
A0 = a0 −0.0991 −0.2069 −0.0991 −0.1983
A∞ = a(1) −0.2270 −0.2154 −0.0227 −0.2270
Entropy and horizon dependence
I(1) = ELt(mt,t+1) 0.0049 0.0214 0.0049 0.0197
I(∞) 0.0258 0.0232 0.0003 0.0258
H(120) = I(120)− I(1) 0.0119 0.0011 −0.0042 0.0001
H(∞) = I(∞)− I(1) 0.0208 0.0018 −0.0047 0.0061
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Table III

Representative agent models with stochastic variance

The columns summarize the properties of representative-agent pricing kernels with
stochastic variance. See Section II.C. Model (1) is recursive utility with a stochas-
tic variance process. Model (2) is the same with more persistent conditional variance.
Model (3) is the Campbell-Cochrane model with their parameter values. Its entropy
and horizon dependence do not depend on the discount factor β or variance v.

Recursive Recursive Campbell-
Utility 1 Utility 2 Cochrane

Parameter or property (1) (2) (3)

Preference parameters
ρ 1/3 1/3 −1
α −9 −9
β 0.9980 0.9980
ϕs 0.9885
b 0
Consumption growth parameters
γ0 1 1 1
γ1 0.0271 0.0271
ϕg 0.9790 0.9790
v1/2 0.0099 0.0099
ν0 0.23× 10−5 0.23× 10−5

ϕv 0.9870 0.9970
Derived quantities
b1 0.9977 0.9977
γ(b1) 2.164 2.1603
ν(b1) 0.0002 0.0004
Entropy and horizon dependence
I(1) = ELt(mt,t+1) 0.0218 0.0249 0.0230
I(∞) 0.0238 0.0293 0.0230
H(120) = I(120)− I(1) 0.0012 0.0014 0
H(∞) = I(∞)− I(1) 0.0020 0.0044 0
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Table IV

Representative agent models with jumps

The columns summarize the properties of representative-agent models with jumps. See
Section II.D. The mean and variance of the normal component wgt are adjusted to have
the same stationary mean and variance of log consumption growth in each case. Model
(1) has iid jumps. Model (2) has stochastic jump intensity. Model (3) has constant
jump intensity but a persistent component in consumption growth. Model (4) is the
same with a smaller persistent component and less extreme jumps.

IID Stochastic Constant Constant
w/ Jumps Intensity Intensity 1 Intensity 2

Parameter or property (1) (2) (3) (4)

Preference parameters
ρ 1/3 1/3 1/3 1/3
α −9 −9 −9 −9
β 0.9980 0.9980 0.9980 0.9980
Consumption growth process
v1/2 0.0025 0.0025 0.0021 0.0079
h 0.0008 0.0008 0.0008 0.0008
θ −0.3000 −0.3000 −0.3000 −0.1500
δ 0.1500 0.1500 0.1500 0.1500
η0 0 0.0001 0 0
ϕh 0.9500
γ0 1 1 1 1
γ1 0.0271 0.0281
ϕg 0.9790 0.9690
ψ0 1 1 1 1
ψ1 0.0271
ϕz 0.9790
Derived quantities
b1 0.9974 0.9973 0.9750 0.9979
γ(b1) 1 1 1.5806 1.8481
ψ(b1) 1 1 1.5806 1
η(b1) 0 0.0016 0 0
Entropy and horizon dependence
I(1) = ELt(mt,t+1) 0.0485 0.0502 1.2299 0.0193
I(∞) 0.0485 0.0532 15.730 0.0200
H(120) = I(120)− I(1) 0 0.0025 9.0900 0.0005
H(∞) = I(∞)− I(1) 0 0.0030 14.5000 0.0007
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Figure 1. The Vasicek model: moving average coefficients. The bars depict
moving average coefficients aj of the pricing kernel for two versions of the Vasicek model
of Section I.E. For each j, the first bar corresponds to parameters chosen to produce
a positive mean yield spread, the second to parameters that produce a negative yield
spread of comparable size. The initial coefficient a0 is 0.1837 in both cases, as labelled
in the figure. It has been truncated to make the others visible.
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Figure 2. The Vasicek model: entropy and horizon dependence. The lines
represent entropy I(n) and horizon dependence H(n) = I(n) − I(1) for two versions
of the Vasicek model based, respectively, on positive and negative mean yield spreads.
The dashed line near the top corresponds to a negative mean yield spread and indicates
positive horizon dependence. The solid line below it corresponds to a positive mean yield
spread and indicates negative horizon dependence. The dotted lines represent bounds
on entropy and horizon dependence. The dotted line in the middle is the one-period
entropy lower bound (0.0100). The dotted lines near the top are horizon dependence
bounds around one-period entropy (plus and minus 0.0010).
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Figure 3. Representative agent models with constant variance: absolute
values of moving average coefficients. The bars compare absolute values of moving
average coefficients for the Vasicek model of Section I.E and the four representative
agent models of Section II.B.
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Figure 4. Representative agent models with constant variance: entropy and
horizon dependence. The lines plot entropy I(n) against the time horizon n for the
representative agent models of Section II.B. The consumption growth process is the same
for each one, an ARMA(1,1) version of equation (23) with positive autocorrelations.
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Figure 5. Model summary: one-period entropy and horizon dependence. The
figure summarizes one-period entropy I(1) and horizon dependence H(120) for a number
of models. They include: Vas (Vasicek); PU (power utility, column (1) of Table II); RU
(recursive utility, column (2) of Table II); RH (ratio habit, column (3) of Table II);
DH (difference habit, column (4) of Table II); RU2 (recursive utility 2 with stochastic
variance, column (2) of Table III); CC (Campbell-Cochrane, column (3) of Table III);
SI (stochastic intensity, column (2) of Table IV); CI1 (constant intensity 1, column (3)
of Table IV); and CI2 (constant intensity 2, column (4) of Table IV). Some of the bars
have been truncated; their values are noted in the figure. The idea is that a good model
should have more entropy than the lower bound in the upper panel, but no more horizon
dependence than the bounds in the lower panel. The difference habit model here looks
relatively good, but we noted earlier that horizon dependence violates the bounds at
most horizons between one and 120 months.
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Figure 6. Numerical approximation of value functions with recursive util-
ity. We compare value functions for recursive utility models computed by, respectively,
discrete-grid and loglinear approximations. See Appendix G. The grid is fine enough to
provide a close approximation to the true solution. The top panel refers to the stochastic
variance model reported in column (1) of Table III. We plot the log value function log ut

against the state variable vt holding xt constant at zero. The discrete grid approxima-
tion is the solid blue line, the loglinear approximation is the dashed magenta line. The
bell-shaped curve is the ergodic density function for the state, a discrete approximation
of a normal density function. The bottom panel refers to the stochastic jump intensity
model reported in column (2) of Table IV. Here we plot the log value function against
intensity ht. The curve is the ergodic density for h′

t = max(0, ht), which results in a
small blip near zero.
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